
Redundant Network Traffic Elimination with GPU
Accelerated Rabin Fingerprinting

Jianhua Sun, Hao Chen,Member, IEEE, Ligang He,Member, IEEE, and Huailiang Tan

Abstract—Recently, redundant network traffic elimination has attracted a lot of attention from both the academia and the industry. A

core challenge and enabling technique in implementing redundancy elimination is to perform content-based chunking, which typically

involves the computationally heavy Rabin fingerprinting algorithm. In this paper, we propose a GPU-based implementation of Rabin

fingerprinting to address this issue. To maximize performance gains, a diverse set of optimization strategies, such as efficient buffer

management, GPU memory hierarchy optimization, and balanced load distribution, is proposed by either exploiting the intrinsic

hardware features or addressing domain-specific challenges. Extensive evaluations on both the overall and microscopic performance

reveal the effectiveness of the GPU-accelerated Rabin fingerprinting algorithm, and we can achieve up to 40 Gpbs throughput on a

GTX 780 card. The throughput shows 1.87� speedup against the state-of-the-art using comparable hardware. In addition, although

some optimization designs are specific for the problem, techniques proposed in this work including the indexed compact buffer scheme

and approximate sorting would also be beneficial and applicable to other network applications leveraging GPU acceleration.

Index Terms—Rabin fingerprinting, GPU, redundancy elimination, data deduplication, approximate sorting

Ç

1 INTRODUCTION

WITH the ever-growing popularity of Internet services,
we have seen steady and continuous growth in Inter-

net traffic in the past decade. Eliminating the transfer of
redundant data can lead to significant savings in terms of net-
work resources. As a result, redundant network traffic elimi-
nation has attracted a lot of attention from both the academic
and the industry [2], [3], [4]. Research proposals andproducts
from major commercial vendors (such as Riverbed, Juniper,
Cisco) typically use protocol-independent redundancy elimi-
nation (RE) [19] to perform data deduplication. Such RE sys-
tems are typically applied at the TCP/IP layer by using
middle-boxes placed at two communicating ends, which
cooperatively cache payloads from network flows and recon-
struct original content by fingerprinting traffic payloads and
identifying matches in the cached data. This process is usu-
ally independent of applications/protocols and transparent
to end hosts. Thus, bandwidth savings can be achieved for all
the traffic between the twomiddle-boxes.

The aforementioned middle-boxes are always advertised
as “WANoptimizers”, which has been increasingly deployed
in large scale production systems. The effectiveness of WAN
optimization relies on the detection of duplicate content. The
most effective andwidely used technique for similarity detec-
tion is called content-based chunking, which was pioneered by
the work of LBFS file system [11] and proposed to identify

repeated byte ranges between packets transferred in the
network [19]. Content chunking is the process of partition-
ing a byte-string into non-overlapping sub-strings called
chunks, whose boundaries are determined by the content
of the data instead of fixed offsets. Rabin fingerprinting
first introduced in [12] perhaps is the most popular
method for content-based chunking. Although the Rabin
fingerprinting algorithm plays a critical role in content
chunking, it is computationally demanding. The chunking
operation needs to scan every byte of the input string to
compute a fingerprint over a sliding window of the input
data. Therefore, addressing this computational bottleneck
to balance the detection precision and throughput becomes
an inevitable design issue in real systems, including WAN
optimizers and storage deduplication systems.

Some previous studies [7], [10], [16], [20] have shown
that GPUs can significantly improve the performance of
network applications including software routers [7], SSL
cryptographic operations in web servers [10], pattern
matching in intrusion detection systems [20], and network
coding [16]. Due to the massively data-parallel computing
model of modern GPUs, offloading computation-intensive
operations to GPUs is a natural choice to address the per-
formance bottleneck for many applications. Motivated by
the success of these prior studies and the performance
issues faced by current RE systems, in this paper, we will
reveal the potential of GPUs in improving the performance
of the chunking process in RE systems. In particular, we
focus on parallelizing the Rabin fingerprinting algorithm
with the GPU. To the best of our knowledge, this work is
the first to quantify the GPU-based acceleration of Rabin
fingerprinting with detailed algorithmic design and archi-
tecture-specific optimizations in the context of redundant
network traffic elimination.

Based on the CUDA framework, our implementation
of the GPU-based Rabin fingerprinting shows significant
improvement as compared to the CPU-based counterparts,

� J. Sun, H. Chen, and H. Tan are with the College of Computer Science and
Electronic Engineering, Hunan University, ChangSha 410082, China.
E-mail: {jhsun, haochen}@aimlab.org, tanhuailiang@hnu.edu.cn.

� L. He is with the Department of Computer Science, University of Warwick,
Coventry CV47AL, United Kingdom, and the College of Computer Science
and Electronic Engineering, Hunan University, ChangSha 410082, China.
E-mail: liganghe@dcs.warwick.ac.uk.

Manuscript received 10 Nov. 2014; revised 18 June 2015; accepted 5 Aug.
2015. Date of publication 25 Aug. 2015; date of current version 15 June 2016.
Recommended for acceptance by J. L. Tr€aff.
For information on obtaining reprints of this article, please send e-mail to:
reprints@ieee.org, and reference the Digital Object Identifier below.
Digital Object Identifier no. 10.1109/TPDS.2015.2473166

2130 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 27, NO. 7, JULY 2016

1045-9219� 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

mailto:
mailto:
mailto:

enabling traffic payload chunking at the rate of 40 gigabit
per second. Concretely, our fully-optimized implementa-
tion are up to 40� faster than a single-threaded CPU ver-
sion, and 4.2� faster than a baseline implementation on
GPU, reaching a maximum throughput of about 40 Gbps.
In addition, our prototype achieves a speedup of about 10 �
compared to the SampleByte fingerprinting scheme in [2],
which selects the chunks based on the most redundant bytes
that is determined by training the fingerprinting algorithm
on sample traffic and recording the predefined values in a
lookup table.

We make the following contributions in this work:

� Overall, we reveal the benefit and potential of
employing GPU to accelerate the computation of
Rabin fingerprints in eliminating redundant network
traffic using specifically designed data structures
and algorithms.

� In particular, we extensively explore the ways of
optimizing every aspects of the fingerprinting algo-
rithm, such as using indexed compact buffer to miti-
gate data transfer overhead, taking full advantage of
various types of memory to achieve maximummem-
ory throughput, and relying on a fast approximate
sorting operation to balance load among compute
units on the GPU.

� We conduct extensive experiments to validate the
effectiveness of our approach.

The source code of our implementation is available at
https://github.com/aimlab/rabinGPU.

2 BACKGROUND

In this section, we present an overview of the GPU architec-
ture and the Rabin fingerprint algorithm with its application
to content-based chunking.

2.1 General-Purpose Computing on GPUs

The current generation of GPUs have thousands of process-
ing cores that can be used for general-purpose computing.
For example, the Kepler GPU GTX780 consists of 12 Stream-
ing Multiprocessors (SMXs), each equipped with up to 192
Stream Processors (SPs). Each SMX has 64 KB of on-chip
memory that can be configured as 48 KB of shared memory
with 16 KB of L1 cache, or as 16 KB of shared memory with
48 KB of L1 cache, or can be evenly split between L1 cache
and shared memory. The L2 cache (1,536 KB) is shared by
all SMXs. In addition to the L1 cache, Kepler introduces a
48 KB read-only data cache. Each SMX has 64 KB 32bit regis-
ters equally split to the threads running in one block. In con-
trast, the off-chip global memory has a much larger size
(typically in the GB range) and longer access latency.

The schedulable execution unit on the GPU is called a
warp formed by a group of 32 threads. Warps are grouped
together into cooperative thread arrays (CTAs), which are cor-
respondingly structured as a grid. Typically, the threads in
a warp follow the same execution path and operate on
distinct data in single instruction multiple threads (SIMT)
fashion in order to achieve maximal parallelism. Warp
divergence may occur when there are conditional branches
taken on the execution path. Launching a large number of

threads concurrently is a recommended way to hide the
latency of global memory access and to better utilize the
computational resources on the GPU.

2.2 Content-Based Chunking and Rabin
Fingerprinting

Data deduplication has been a hot topic in both storage and
WAN optimization systems in recent years. The basic idea
underlying data deduplication systems is that of content-
based chunking, which essentially consists of three steps:
1) Chunking that partitions the data into different chunks
based on data content instead of fixed offsets. 2) Hashing
that calculates a collision resistant hash for each chunk.
3) Matching that checks if the hash of a new chunk already
exists by searching the hash store. In this paper, our focus is
on parallelizing the data chunking (particularly with Rabin
fingerprinting) using GPUs, since it is practically one of the
main bottlenecks in these systems.

In the following, we show how Rabin fingerprinting
works and introduce some notation to help clarify several
concepts of the chunking approach. Given a data block (e.g.,
the payload of a packet) of size S bytes, The Rabin finger-
printing algorithm calculates the fingerprints over a sliding
window of size v (S � v), which advances one byte at a
time. The size of the slidingwindow is configurable and typi-
cally ranges from 12 to 64 bytes in network traffic RE sys-
tems. Storing all possible fingerprints for identifying
duplicate content is obviously impractical, considering the
potentially large amount of fingerprints for each data block
(S � vþ 1 and S � v). As a result, only a small fraction of
representative fingerprints that contain specific values (e.g.,
the least significant 8 bits are all 0) are recorded. Thewindow
position (the first byte of the window) of the corresponding
representative fingerprint is considered as the boundary
(marker) of a chunk. The chunk is the byte string between two
markers. The fingerprint is a pseudo-random hash of the con-
tent in the slidingwindow beginning at themarker.

3 DESIGN AND IMPLEMENTATION

In this section, we first present a baseline implementation of
the Rabin fingerprinting on the GPU. Then, we show the
potential bottlenecks in this basic design by analyzing the
memory access patterns and control flow divergence with
respect to the specifics of the GPU architecture. At last, we
describe in detail our novel optimizations to address the
performance issues in the baseline implementation.

3.1 Baseline Implementation

Listing 1 shows the baseline implementation of the Rabin
fingerprinting algorithm written in CUDA. To efficiently
utilize the computing resources on the GPU and avoid extra
state management and synchronization, we follow a simple
approach adopted by most previous work, in which each
packet is processed by one thread independently. In this
naive implementation, there are five notable components:
(1) The input buffer ‘uchar *in’ that is a large continuous
memory block for organizing network packets, each of
which is stored in a fixed-size bucket. (2) The output buffer
‘uint64_t *out’ that is used for the storage of fingerprints
found. (3) The data structure ‘struct rabinpoly window *rw’

SUN ETAL.: REDUNDANT NETWORK TRAFFIC ELIMINATION WITH GPU ACCELERATED RABIN FINGERPRINTING 2131

https://github.com/aimlab/rabinGPU

that contains two pre-computed lookup tables U and T,
which aid the computation of fingerprints. (4) The auxiliary
data buffer ‘uchar *rabin_buf’ maintained for each packet as
it is processed (at lines 14, 25, 27). (5) The core computation
loop that reads packet input in byte stream (line 26),
performs read/write accesses to the auxiliary buffer (at
lines 25, 27), updates the fingerprint value (at lines 29, 30),
and records the fingerprint in the buffer ‘out’ if it is a desired
one (at line 33).

It is straightforward to derive the GPU implementation of
Rabin fingerprinting based on its CPU equivalent. How-
ever, an efficient GPU implementation requires a deep
understanding of the GPU architecture, such as the memory
subsystem, the branch divergence, and the load imbalance
in warps or CTAs. We briefly describe some of these consid-
erations to motivate the need for our optimizations.

Memory analysis. The non-optimized device memory
access is one of the main reasons that make the baseline
implementation suffer a severe performance penalty. First,
all the memory operations are performed directly on the
global memory (see lines 25, 26, 27, 29, 30, and 33). Although
accesses to the global memory go through L2 cache, its lim-
ited size and the sequential access to the packet stream in
each thread render the L2 cache almost useless. In particu-
lar, the core processing loop involves frequent accesses to
the auxiliary buffer and the pre-computed lookup tables,
which may incur non-trivial overhead. Thus, we should first
focus attention on optimizing the memory access for the key
data structures.

Second, most existing works use fixed-size bucket to
buffer network packets before transferring them to the
GPU. As compared to this intuitive design that may result
in unnecessary host-to-device data transfer overhead due to
irregular distribution of packet size, we choose a more com-
plex buffering scheme that stores packets one by one in a

consecutive buffer, and maintains indexes for the packet
buffer to facilitate packet processing on the GPU.

Third, besides the optimizations for the key data struc-
tures, specific features exposed by different GPU memory
spaces should also be leveraged to improve performance.
For example, byte-wise access to the input stream that
resides in the global memory may lead to underutilization of
the memory subsystem, given the abundant memory band-
width of GPUs. Accessing the global memory with long
words is a promising way to alleviate this issue, as we will
show in this paper. Combining the optimizations mentioned
above with the appropriate exploitation of distinct memory
spaces, such as the on-chip shared memory and register, we
can expect further significant improvement in performance.

Branch divergence analysis.When the GPU threads execute
different instructions in a warp, branch divergence can
occur. if-then-else and loop statements are common sources
of divergence. In Listing 1, execution path divergences at
lines 22, 23, 32, and 33 cause performance degradation.
Some divergences are inevitable because of the choices of
algorithms and data structures, such as the ones at lines 22,
23, and 33, while others may be avoidable like the one at
line 32 by moving the if statement out of the loop. Seemingly
inevitable divergence can also be alleviated if the right
trade-off can be identified, such as allowing redundant com-
putation to circumvent explicit branches as discussed in this
paper. To address these issues, we will present optimization
strategies to amortize or eliminate performance overhead
caused by the divergence in later sections.

Load imbalance analysis. Due to the one-packet-per-thread
processing model and the sequential access pattern for each
packet, if the network traffic exhibits abnormal distribution of
packet size, unbalanced loads imposed on GPU threads
would be detrimental to the overall performance. For exam-
ple, threads processing packets with large payloadwill iterate
the for loop at line 22 many more times than other threads,
thus stalling other threads in the same warp. Arranging the
packets in certain order may be a viable solution to this issue,
if minimal overhead incurred by additional operations can be
guaranteed. GPU-accelerated sorting has been demonstrated
as an effective solution in many applications. However, some
constrains made in conventional sorting algorithms can be
relaxed in our case, which would lead to further improve-
ment in performance as detained in this paper.

3.2 Optimizations

In this section, we present our novel optimizations that
extend the baseline implementation to overcome the bottle-
necks briefed in the previous section.

3.2.1 Indexed Compact Packet Buffer

Transferring data from the host memory (CPU) to the device
memory (GPU) and vice versa incurs non-trivial overhead,
because the GPU is usually connected to the system via the
PCIe bus whose bandwidth is still a limiting factor, although
there has been significant improvement in recent revisions
of the PCIe standard. For example, in our test machine
(a GTX780 GPU connected to motherboard via PCIe 2.0 �16
link), the data transfer rate peaks at 5.3 GB/s for the host-to-
device transfer and 5.9 GB/s for the device-to-host transfer,
whereas the device memory access bandwidth on the GPU is

2132 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 27, NO. 7, JULY 2016

144 GB/sec, an order of magnitude higher. Worse, the PCIe
bus suffers much more overhead for small-sized data trans-
fers. As a result, most existing work exploiting GPU accelera-
tion adopts a simple approach in which a large buffer is
maintained to accumulate networkpackets and all the packets
collected during a given period of time are moved to the GPU
in batches. The buffer is typically divided into fixed-size buck-
ets to contain individual packets. This design performs well
for certain workload, but it has important implications when
considering the performance generally.

Implications. (1) Using fixed-size bucket may lead to
reduced effective bandwidth in data transfer, because the
bucket size is usually conservatively chosen to guarantee
that it is large enough to queue variable-length packets, and
the transfer of unused bytes would cause a huge waste of
bus bandwidth in most cases. (2) The design of fixed-size
bucket may also result in potential underutilization of paral-
lelism of the GPU. For example, suppose we have a large
buffer of size 15 MB and the bucket size is 1,500 Bytes, so
the maximum number of packets the GPU can process con-
currently is 10,000. However, in most cases, the spare space
in the buffer can be leveraged to store more packets to
increase the degree of parallelism of the GPU. (3) The time
spent on chunking a specific buffer is split between the data
transfer and the kernel computation. The above two aspects
indicate that it is highly possible that the data transfer may
dominate the overall execution time, a situation that GPU
developers should try to avoid.

Approaches. In order to address these performance issues,
we propose an indexed compact buffer scheme similar to
one of the optimizations addressed in [21]. Instead of allo-
cating fixed-size bucket for each packet, we store packets in
the buffer one after another with no space in-between. An
index structure is thus maintained to facilitate the manage-
ment of the packet buffer. We believe this scheme is general
and applicable to many other scenarios using GPU as the
accelerator, such as software routers and variable-length
data deduplication in storage systems.

Fig. 1 depicts an overview of the indexed buffer scheme.
We first present the usage of several mostly-related indexes,
and others will be detailed gradually in the following. The
arrays size and off are two indexes used to locate the element
belonging to each packet, and they are both generated on
the CPU when accumulating packets into the buffer. The
size array records the real length of each packet. However,
in order to improve performance by exploiting the GPU
memory hierarchy, we partition each packet into fixed-size
data unit aligned to a 16 byte boundary. Therefore, the
actual packet size measured with the 16-byte-long unit

needs to be recalculated on the GPU as shown at lines 39-40
of Listing 2. We can maintain the size array according to
data alignment, but the sorting optimization for load imbal-
ance (discussed later) requires the real packet size as input.
So, we retain the current design for simplicity. The array off
contains the values representing the offset of the first unit of
each packet in the raw input array. The offset is calculated
based on the aligned size. Also initialized on the CPU, the
array pkt_num is one of the inputs to an approximate sorting
operation that can generate a reordered array to aid in map-
ping GPU threads to right packets. The three arrays prefixed
by ‘s_’ are the outcome of the sorting operation. The rabinp-
oly is a fingerprinting specific structure that contains pre-
calculated parameters and is shared by all GPU threads.

Fig. 1. Illustration of the indexed compact packet buffer.

SUN ETAL.: REDUNDANT NETWORK TRAFFIC ELIMINATION WITH GPU ACCELERATED RABIN FINGERPRINTING 2133

Although depicted separately in Fig. 1, memory space
allocated for the indexes size, off, and pkt_num is actually a
part of the packet buffer, located at the beginning of the
buffer. In this way, we can either copy the index to the
GPU separately or as a whole with the packet payload
according to different optimization strategies as discussed
in later sections. Besides the three arrays that have counter-
parts on both the CPU and GPU, other indexes only
require allocating memory on the GPU side and the mem-
ory can be reused by subsequent computations. The space
cost of maintaining these indexes is negligible given the
large mount of memory equipped with current GPUs and
our problem scale. Although not a integral part of the
index, the output is similarly organized into a contiguous
memory space that is split into three components each
with different data types. The array fp stores the 64-bit fin-
gerprints found, the arrays offset (16-bit) and size (8-bit)
record the precise position and the number of fingerprints
discovered for each packet respectively. This design (com-
pact memory layout and minimum data types) can reduce
the overhead of device-to-host data transfer.

3.2.2 Managing the GPU Memory Hierarchy

In our baseline implementation, each GPU thread scans an
assigned packet one byte at a time from the global memory,
implying quite substantial underutilization of theGPU’smas-
sive memory bandwidth. An optional solution is to assign
multiple threads to each packet in order to improve the utili-
zation of memory subsystem. However, this would make the
implementation complicated, if not possible, because of the
philosophy underlying the Rabin fingerprinting computation
that requires strictly sequential processing order for bytes in a
specified window. In addition, the high access latency of
devicememory (on the order of hundreds of cycles)motivates
the use of faster on-chip memories for frequently accessed
data like the lookup tables and auxiliary buffer.

Implications. In order to achieve optimal performance, we
should exploit the distinct characteristics of various memo-
ries in the GPU memory hierarchy.

Approaches. In Fermi and Kepler architecture, the hard-
ware always issues memory transactions of 128-byte if the
L1 cache is enabled (corresponding to the cache line size);
otherwise, 32-byte transactions are performed. This means
that it is always preferable to use longer words for better
utilization of the memory bandwidth [21], [22]. Our opti-
mized implementation fetches 16 bytes at a time by using
the largest built-in vector data type int4, as shown at lines
28 and 48 in Listing 2. In accordance with this design, on the
host side, we need to align each packet to 16-byte boundary
when collecting packets into the buffer. Although packet
alignment implies the reservation of extra unused space,
the performance benefit from aligning packets far out-
weighs the penalty incurred by unnecessary data transfers.
In addition, we will present an approach to avoiding com-
plex processing logic in fingerprints computation due to
data alignment in Section 3.2.3. Furthermore, in order to
avoid maintaining another aligned-size array and thus the
transfer cost, we generate the aligned size dynamically on
the GPU (see lines 39 and 40 in Listing 2).

We leverage shared memory to optimize the data access
to the lookup tables and per-thread auxiliary buffer (defined

at lines 8 and 9 in Listing 2). Since each thread performs
both read and write access to its own auxiliary buffer, care-
ful partitioning of the shared memory is essential to prevent
bank conflicts and ensure maximized performance. In par-
ticular, on Fermi architecture GPUs, shared memory is
divided into 32 banks, each of which is 4-byte wide, and
successive 4-byte words is assigned to successive banks.
Accesses to shared memory are issued per warp, so the data
layout in shared memory is crucial for performance. As
shown in Fig. 2, to eliminate bank conflicts, we manage
the shared memory in such a way that fits exactly to the
hardware architecture. The sequentially increased numbers
in squares reflect how successive 4-byte words are assigned
to banks. Accesses to the shared memory by the threads in
a warp are evenly distributed to all the banks. The auxiliary
buffer for a specific thread is allocated in the same bank
and organized in a strided layout. Using the formula
threadIdx:x=32þ ðthreadIdx:x%32Þ � 4 to calculate the base
address for each buffer and setting the stride to 128
(32 banks * 4-byte), we can perfectly map the threads in a
CTA (of size 128) to the shared memory. Although other
partitions may also be possible, our current design signifi-
cantly outperforms a flat partitioning scheme, in which the
shared memory is split into equally-sized and contiguous
blocks that are allotted to threads sequentially.

Because the lookup tables are shared by all the threads in
a CTA and exhibit a read-only random access pattern, they
are implemented as-is with no further layout optimizations.
In addition, for Kepler GPUs, the number of banks is still 32,
but the bank width has doubled to 8-byte (both 8-byte and
4-byte access mode are supported). When we explicitly set
the access mode by calling cudaDeviceSharedMemConfig
with cudaSharedMemBankSizeEightByte as the argument, we
observed immediate effect on performance for about 8 per-
cent gains because of the improved bandwidth utilization of
accessing the 64-bit arrays U and T. Allocating too much
shared memory for each thread may have negative impact
on performance due to low theoretical CUDA occupancy. To
address this issue, we tried to achieve higher occupancy by
offloading the lookup tables storage from the shared mem-
ory to the 48 KB read-only data cache introduced to Kepler
GPUs (using the __ldg() intrinsic). This cache supports full
speed unalignedmemory access patterns, and has the poten-
tial to reduce bandwidth contention in the shared memory.
Unfortunately, we observed non-trivial performance degra-
dation by leveraging the data cache, which is radically differ-
ent from our initial expectations.

Fermi GPU has 32 K 32-bit registers per SM, and the max-
imum theoretical register allocation per thread is 63 32-bit

Fig. 2. Bank-conflict-free access to shared memory.

2134 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 27, NO. 7, JULY 2016

registers. Kepler GK110 GPU has doubled the number of
registers per SM. Given the abundance and access speed of
registers, we can even allocate storage for arrays that are
indexed with constants (guarantee no spills to local mem-
ory) using registers. For example, the input stream read
from the global memory to a local variable (of type int4) is
copied to the array tmp by byte-wise shifting the .x, .y, .z
and .w fields (performed by the function fill_buffer). For
example, for a value v of type int4, we can extract the bytes
of its field .x using the code sequence: buf½0� ¼ ðucharÞv:x;
buf½1� ¼ ðucharÞðv:x � 8Þ; buf½1� ¼ ðucharÞðv:x � 16Þ; buf½1� ¼
ðucharÞðv:x � 24Þ. In this way, we can not only guarantee
maximized data access performance, but also make the
implementation straightforward as compared to alterna-
tives that explicitly access the fields of the int4 structure.
Another interesting observation is that when the size of the
sliding window is less than 16, the auxiliary buffer can
reside totally in the register. However, this scheme does not
scale well to large-sized sliding window even the perfor-
mance benefit is non-trivial. The implication is that there
would be room for further improvement in performance if
we adopt a mixed-storage model for the auxiliary buffer by
combining the shared memory and register. We leave this
as our future work. In order to avoid excessive register
usage that may also lower the CUDA occupancy like the
shared memory, variables that remain same to all the
threads in a warp are stored in the constant memory that
has the property of delivering a value in a single cycle if the
value is requested by all the threads. For example, the varia-
bles mask and shift in Listing 2 are excellent candidates for
the constant memory. We do not use constant memory for
these variables in our current implementation because it
does not incur excessive usage of registers.

3.2.3 Alleviating Divergence

GPU’s SIMT architecture enforces the threads in a warp to
execute in a stepwise fashion in order to achieve optimal
performance. When a data dependent conditional branch
occurs, serialized execution is imposed to the warp until all
threads in it converge to the same execution path. In our
case, both the inherent algorithmic choice and optimization
strategy proposed earlier may result in divergence as dis-
cussed below.

Implications. Since it is often inevitable to introduce diver-
gence in real applications, to avoid performance issues
arose from divergence, care must be taken in constructing
the algorithm in order to eliminate or minimize the effect of
conditional branches.

Approaches. First, the fingerprinting algorithm works by
scanning the content over a sliding window (we denote its
size by s), so each thread firstly needs to read the beginning
s� 1 bytes before performing real fingerprint calculation,
which requires a precondition check. But placing the check
inside the main calculation loop would make it wasteful
and unnecessary to perform checks for the remaining bytes.
Thus, we separate the fingerprinting of the initial s bytes
and the remained into two loops (see the comments at line
42 of Listing 2 and the initialization expression of the for
loop at lines 44-45). In addition, we observed no further
improvement by enabling the compiler’s loop unroll
(#pragma unroll) optimization.

Second, the code shown at line 59 of Listing 2 is a condi-
tional branch that determines if a desired fingerprint is
found. At the first look, in addition to divergence, saving
the fingerprints directly into the global memory would stall
the corresponding threads for much longer, and the ran-
domness of fingerprint distribution among different threads
may exacerbate the problem. However, in practice, the cost
of storing the full set of fingerprints for a data stream is pro-
hibitively high in terms of storage space, thus only a small
proportion of fingerprints whose least significant n bits are
0 are recorded. In our case, the maximum segment size for
TCP payload is 1,460 and we set n to 8 and s to 32, so the
average number of fingerprints found in a packet would be
about six according to ð1460� sþ 1Þ=2n (11 for n ¼ 7, and
22 for n ¼ 6). Hence, the performance impact due to writing
fingerprints to the global memory would be much smaller
than expected, and additional optimizations may not be
worthwhile. We have attempted to optimize this issue by
temporarily storing the fingerprints in registers and flush-
ing them to the global memory at the end of the kernel. But
this endeavor brings no satisfactory results, coinciding with
our assumption and analysis.

Third, accessing the global memory based on packet
alignment and built-in vector types like int4 has the advan-
tage of increased memory bandwidth utilization. However,
the content padded due to alignment should be considered
in computing the fingerprint. For example, we need to trace
how many bytes are left to perform fingerprinting, and
know if the remaining bytes are within or cross the align-
ment boundary. Taking into account all these corner cases
would apparently complicate the implementation and hurt
performance consequently. As a result, we adopt a diver-
gence-free strategy, which intentionally allows the unneces-
sary fingerprinting of the padding bytes, but can distinguish
alignment-incurred fingerprints by examining the position
of fingerprints recorded in an offset array as shown at line
61 of Listing 2. With the real length of packets, simple calcu-
lation based on the recorded information can filter out the
false positives. For a packet aligned on a 16-byte boundary,
at most 15 superfluous bytes are fingerprinted, and on aver-
age less than one false positive (according to the analysis in
the above paragraph) will be generated. This overhead is
negligible as compared to that incurred by implementing
complex conditional logics in the main loop to avoid finger-
printing the padding bytes.

3.2.4 Optimizing Load Imbalance with Approximate

Sorting

Inherent irregularity in some applications may cause unbal-
anced workload distribution among threads on the GPU,
resulting in ineffective utilization of compute resource. In
our case, processing packets with a high length variance
will lead to workload imbalance within warps and thread
blocks. For example, a single thread/warp processing a
comparatively large packet would cause resource waste as
every packet will take as many cycles as the largest one to
process in the warp/thread block.

Implications. Because current GPUs provide no support
for fine-grained thread-level task scheduling, tackling the
inefficiency incurred by workload irregularity imposes the
responsibility of fine-tuning the algorithm on developers.

SUN ETAL.: REDUNDANT NETWORK TRAFFIC ELIMINATION WITH GPU ACCELERATED RABIN FINGERPRINTING 2135

An ideal solution to this problem should work well for a
wide range of workloads. For example, it should achieve
highest possible performance for highly irregular work-
loads, and at the same time guarantee lowest possible cost
for regular workloads.

Approaches. To address this issue, we initially explored
the idea of identifying outliers in packet streams to defer
their processing to subsequent kernels [9]. Without any suc-
cess due to the considerable overhead, we resorted to other
solutions instead. Although existing work [18] indicates that
it is not worthwhile to group packets with identical or simi-
lar size by performing sorting on GPUs. On the contrary, we
found that pre-sorting the packets on CPU can result in a
significant performance increase for the fingerprinting ker-
nel as demonstrated in GASPP [23]. Moreover, balancing
the workload within warps or thread blocks does not neces-
sarily require a strict ordering of packets. These investiga-
tions are the direct motivation for inventing a GPU-based
approximate sorting algorithm as detailed below. Approxi-
mate sorting may also be used to alleviate load imbalance in
GPU-based graph algorithms [9], and to improve the perfor-
mance of real-time graphics applications [17].

As shown in Fig. 3, our algorithm operates in three steps.
First, each element in the size array is mapped into a bucket
(the number of buckets is a pre-defined parameter and typi-
cally much less than the input size). In this step, we main-
tain an ordering among all elements that are mapped into
the same buckets and a counter array that records the size
of each bucket. Second, an exclusive prefix sum operation is
performed on the counter array. In the third step, the results
of the above two steps are combined to produce the final
coordinates that are then used to transform the input vector
into the approximately-sorted form.

Step 1. Similar to many parallel sorting algorithms that
subdivide the input into equally-sized buckets and then
sort each bucket in parallel, we first map each element of
the size array into a bucket. As shown in Listing 3, the num-
ber of buckets is a fixed value NUM_BUCKETS, and the
mapping procedure is a linear projection of each element in
the input vector onto one of the NUM_BUCKETS buckets.
The linear projection is demonstrated at lines 10 and 11 in
Listing 3, where the variables of min and max represent the
minimum and maximum value in the input respectively,
which can be obtained when accumulating packets into the
packet buffer on the CPU. In this way, each bucket repre-
sents a partition of the interval ½min;max�, and all buckets
have the same width of ðmax�minÞ=NUM BUCKETS.

The elements in the input vector are assigned to the target
bucket whose value range contains the corresponding ele-
ment. In addition, another array bucket_count is maintained
to record the number of elements assigned to each bucket.
As shown at line 13, the counting is based on an atomic
function provided by CUDA, atomicInc, to avoid the poten-
tial conflicts incurred by concurrent writes. The function
atomicInc returns the old value located at the address pre-
sented by its first parameter, which can be leveraged to indi-
cate the local ordering among all the elements assigned to
the same bucket. The Kepler GK110 GPU has substantially
improved the throughput of global memory atomic opera-
tions as compared to Fermi GPUs, which also has been vali-
dated in our implementation.

Step 2. Having obtained the counters for each bucket
and the local ordering within a specific bucket, we perform a
prefix sum operation on the counters to determine the address
at which each bucket’s data would start. Given an input
array, the prefix sum, also known as scan, is to generate a new
array in which each element i is the sum of all elements up to
and including/excluding i (corresponding to inclusive and
exclusive prefix sum respectively). Because the length of the
count array (NUM_BUCKETS) is typically less than that of
the longest packet, performing the scan operation on CPU is
much faster than on GPU. However, due to the data transfer
overhead (in our case, two transfers), and the fact that we
observed devastating performance degradation when mix-
ing the execution of the CPU-based scan with other GPU
kernels in a CUDA stream, the parallel prefix sum is per-
formed onGPU using the CUDPP library [8].

Step 3. By combining the atomically-incremented offsets
generated in step 1 and the bucket data locations produced
by the prefix sum (as shown at lines 13-16 in Listing 4), it is
straightforward to scatter the size-offset pairs (notice the two
different offsets, one for packet metadata and the other for
sorting) to proper locations (see lines 19-20). With the sorted
offset array, threads in the same warp or block is able to
process packets that are similar in size, leading to balanced
workload distribution. A side effect of the sorting operation
is that we can not directly save fingerprints at locations
indexed by thread ids, because of the remapping of threads
to packets. Therefore, we maintain another index array to
number each packet in increasing order (the same as how
thread ids are sequentially assigned by the GPU), and this
array can also be sorted in the approximate sorting (see line
21 in Listing 4). Relying on it, each thread can be connected
to its designated position (see lines 30-33 in Listing 2).

Choosing a suitable value for the number of buckets
may have important implications for the efficiency and

Fig. 3. Illustration of approximate sorting.

2136 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 27, NO. 7, JULY 2016

effectiveness of our sorting algorithm. As the number of
buckets increases, for inputs exhibiting non-constant distri-
bution of packet size, our algorithm would approximate
more closely to the ideal sorting, while the overhead of per-
forming the prefix sum may increase accordingly. When
decreasing the number of buckets, besides the effect of getting
a coarse-grained approximation for the input vector, time
variations for the kernel assign-bucketmay occur as a result of
using the atomic operation to resolve conflicts when multiple
elements are assigned to the same bucket concurrently.

3.2.5 Concurrent Copy and Execution with Streams

GPU-assisted applications may suffer from the prominent
overhead of transferring data between the host and device
over the PCIe link. In particular, for scenarios where
the data transfer overhead significantly outweigh the actual
computation cost, the overall performance would be sev-
erely constrained.

Implications. The time-consuming data transfer in chunk-
ing a given packet buffer may dominate significantly over
the computation time. Worse, the optimizations proposed
to accelerate the kernel execution would become irrelevant
because optimizing computation may make the data trans-
fer an even greater burden on the overall performance.

Approaches. We leverage the GPU hardware support to
address this issue. In particular, we use GPU streams to
achieve concurrent copy and execution with each stream
encapsulating the task of chunking a specific packet buffer.
In a single stream, the execution is serialized because of the
interrelated dependency among distinct kernels. However,
streams processing different packet buffers can be scheduled
by the GPU independently to enable not only concurrent
copy and execution, but also concurrent kernel launches
from separate streams. In particular, the index metadata is
treated differently in two scenarios. On one hand, although
the metadata is located at the header of the packet buffer, for
high-end GPUs, in order to achieve high throughput, we
often maintain a relatively large buffer that is at least one
order of magnitude larger than themetadata. Due to the seri-
alized execution within streams, performing sorting on the
indexes after the whole buffer is transferred to the GPU can
not fully exploit the concurrent copy engine. To this end, we
intentionally break up the transfer of the metadata and pay-
load data and invoke the sorting kernel after the metadata

copy (from CPU to GPU), instead of performing sorting
when both metadata and payload are loaded to GPU. With
this simple optimization, we see a constant performance
boost about %10. On the other hand, in environments where
the kernel computations dominate in the overall cost, it
would be preferable to transfer the whole buffer to the GPU
in one transaction instead of two.

3.2.6 Other Optimizations Considered

For certain applications (like ours), the difference of favored
data layout between the CPU and GPUmay result in subop-
timal performance. On CPUs, applications may prefer row-
major data layout because of the extensive support for cache
locality, prefetching, et al. in hardware. In contrast, GPU
applications benefit from coalesced memory access, which
requires a column-major data layout so that threads in a
warp can access contiguous data in the global memory. This
discrepancy motivated us to develop a data remapping
approach, which is independent of the fingerprinting algo-
rithm by manipulating the coordinate of each data element
with a series of kernel invocations. We indeed observed non-
trivial improvement in performance with the column-major
layout, but the cost of the data remapping process itself is rel-
atively high. So we excluded this optimization. We hope that
the hardware, driver, or runtime could provide mechanisms
to automate the transformation of data layout, saving addi-
tional cost but without compromising transparency.

3.2.7 Comparison with Shredder

Shredder [5] is a high performance content-based chunking
system for storage systems, and it also implements a GPU-
based Rabin fingerprinting. Although Our work shares
some similarities with Shredder, major differences exist
between the two systems as discussed below.

First, Both Shredder and our system use the optimiza-
tion of concurrent copy and execution to overcome the
bottleneck of DMA transfer between CPU and GPU. The
difference is that Shredder proposes a design of double
buffering, while our system separates the metadata trans-
fer from the payload transfer, which makes the concurrent
execution of approximate sorting possible. In addition,
Shredder has two unique designs on the host side. One is
the circular ring buffers to minimize the penalty of allo-
cating pinned memory; the other is the multi-stage
streaming pipeline to obtain better resource utilization at
the host.

Second, because optimizing the access to shared memory
to avoid bank conflicts has significant impact on perfor-
mance, Shredder fetches data from global memory to shared
memory that is evenly split among threads. However, our
system only uses the shared memory to optimize the access
to key data structures such as the lookup table and auxiliary
buffer, and a strided layout of shared memory for the auxil-
iary buffer is adopted instead of a flat partitioning. We rely
on large word to optimize global memory access, which is
also presented in Shredder. Moreover, more algorithmic
details and design options are exposed in this paper as
shown in Section 3.2.2.

Third, Shredder only qualitatively discusses warp diver-
gence and its impact on performance, while this paper

SUN ETAL.: REDUNDANT NETWORK TRAFFIC ELIMINATION WITH GPU ACCELERATED RABIN FINGERPRINTING 2137

reveals more implementation-level considerations on allevi-
ating divergence, such as separating the fingerprinting
of the initial byte sequence and intentionally performing
unnecessary fingerprint computation due to memory align-
ment. In addition, we observe no improvement with loop
unroll, which is contrary to the results made in Shredder.

Fourth, as compared to Shredder that only concerns
about fixed-size data blocks in storage systems, two distin-
guishing features, indexed compact packet buffer and
approximate sorting index, are proposed to tackle specific
needs in network systems. In particular, for variable-length
network packets, indexed compact buffer can be used
to optimize GPU resource utilization, and approximate
sorting is effective on alleviating load imbalance. However,
these are not the main issues for fixed-size data processing
as in Shredder.

4 PERFORMANCE EVALUATION

In this section, we evaluate the performance of the GPU-
based Rabin fingerprinting algorithm. The experiments
were conducted on a machine equipped with an AMD phe-
nomII X6 1055T CPU (hexa-core 2.8 GHz), 8 GB main mem-
ory, and an Nvidia GTX 780 (Kepler) GPU card. The GPU
has 12 SMXs, each containing 192 cores (2304 cores in total),
and 3 GB device memory. The maximum amount of shared
memory for each SM is 48 KB. The operating system was
64-bit Ubuntu 12.04 with CUDA 5.5 and NVIDIA driver of
version 331.67 installed.

4.1 Overall Performance

We first present the comparison of overall performance
using different hardware configurations or software imple-
mentations, and evaluate how each optimization method
contributes to the overall performance.

In Fig. 4a, all the evaluations onGPUs use the same config-
uration parameters (16 K packets, four streams, and uniform
packet size distribution). The baseline GPU implementation
onGTX780 achieves 8.98 Gbps throughput, which is 9.5� bet-
ter than the result (0.95Gpbs) of the single-threadedCPUver-
sion. The throughput on GTX780 with all optimization
enabled is 37.79 Gpbs. Our simplemulti-threaded implemen-
tation on the hexa-core CPU shows linear scalability, indicat-
ing that a machine with 40 CPU cores would be the basic
requirement to obtain results comparable to the GTX780
GPU; Of course, with different packet size distributions we
may obtain different performance results. In addition, we
observed 33.6 and 13.8 Gbps throughput on GTX480 and

GT650M (on a Macbook pro) respectively, which indicates
the cost-effectiveness of our approach because of the decent
performance results on low-end GPUs. The result on GTX480
shows a 1.87� (33.6 bps versus 18 bps) speedup of through-
put compared to Shredder under comparable hardware
(Telsa C2050 for Shredder). Both the GPUs belong to the
FermiGF100 architecture, and have the same number of cores
(448) and the samememory interfacewidth (384 bit).

In order to quantitatively evaluate the contribution of
individual optimization strategy to the overall performance,
we conducted experiments in which we separately disable
one specific optimization with other optimizations enabled.
As shown in Fig. 4b (results were collected using the
GTX780 GPU), by intentionally plotting the data in the histo-
gram in descending order, we can comparatively observe
the impact of each optimization method on the performance.
Because it is difficult to accurately measure performance
metrics across CUDA streams, we use the result obtained
from disabling streams as the baseline. From Figs. 4a and 4b,
we can see that CUDA streams improve the throughput by
%32. For a single stream, optimizations including the diver-
gence alleviation, approximate sorting, long word access,
and shared memory can improve the throughput by %14,
%19, %21, and %99 respectively. The above analysis reveals
that shared memory and streams are the top 2 most impor-
tant contributors to the performance, while other optimiza-
tions also lead to non-trivial improvement.

4.2 Optimization Analysis

In this section, we investigate the impact of each optimiza-
tion strategy proposed in this paper on performance in
detail. The results were obtained using the GTX780 GPU.

4.2.1 Indexed Buffer versus Fixed Buffer

Fig. 5a shows the throughput of Rabin fingerprinting using
the fixed-size buffer scheme that is adopted by most previ-
ous studies. In this experiment, we set the number of pack-
ets to be processed to 16 K. We compare the performance
difference when the data transfer overhead is or is not con-
sidered. In both cases, the gradual increase of the through-
put as the packet size increases indicates that larger
payload can always make more efficient utilization of the
GPU. When not taking into account the data transfer, the
throughput peaks at 107 Gbps for the maximum packet
size, and drops to 42 Gbps for packet size of 100 bytes, cor-
responding to a 2.5� degradation in performance. We can

Fig. 5. Performance comparison of indexed and fixed buffer schemes.

Fig. 4. Performance comparison of indexed and fixed buffer schemes.

2138 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 27, NO. 7, JULY 2016

see only marginal improvement when the packet size
becomes larger than 700, which implies near-saturated GPU
utilization. In comparison, the data transfer incurs signifi-
cant overhead to the throughput. For example, packets with
full payload achieve 30 Gpbs throughput, but the through-
put is only 2.7 Gbps for 100-byte packet, indicating a
11� performance discrepancy. Comparing the performance
deviations (e.g., 2.5� versus 11�) and observing the linear
scalability of throughput in the later case, we can conclude
that the packet size has more important implications for
performance when the data transfer overhead is considered.

Fig. 5b compares the performance of two schemes, i.e., the
indexed buffer and fixed-size buffer. We only present the
results involving data transfer overhead, and also include
the performance data obtained from using CUDA streams to
show some interesting findings. Undoubtedly, the indexed
scheme outperforms the fixed buffer scheme significantly in
both stream and non-stream based scenarios. The through-
put (without streams) increases from 2.7 and 11.7 Gbps (100-
byte) to 30 and 30.3 Gbps (full payload) for the two buffering
schemes respectively. The performance curves of using
streams exhibit similar trend, but much higher throughput
especially for the indexed buffer. For example, the through-
put raises from 2.9/16.2 Gpbs (smallest packet) to 40/40.7
Gbps (full payload) respectively. Obviously, we obtain
approximately the same throughput for full-payload packets
(e.g., 30 versus 30.3 and 40 versus 40.7). In addition, two find-
ings are worth further exploration. First, the fixed buffer
scheme scales linearly with respect to the packet size, and
the performance gains from using streams are marginal for
small packet. However, the improvement of the stream-opti-
mized indexed buffer is much more significant for the full
range of packet sizes (see the large gap between the blue and
green curve). Second, we can learn that the indexed buffer
without streams still outperforms the fixed buffer using
streams when the packet size is smaller than 1,100 bytes, by
observing the intersection of the green and yellow curve.

4.2.2 Memory Hierarchy Optimizations

Fig. 6a presents the performance comparison using different
word sizes. The x axis shows the number of packets off-
loaded to the GPU in a batch, which is equal to the number
of threads due to the one-packet-per-thread model. As the
number of threads increases, the throughput climbs up
accordingly for all word sizes as a result of the massive
multi-thread capability of the GPU that can effectively
hide the memory access latency. We can observe the wide

performance disparities among different word sizes when
the number of threads exceeds 8 K. Obviously, accessing
the global memory using longer word constantly results in
greater performance. When using int4 and 32 K threads, the
throughput achieves 121 Gbps that is 1.3 and 1.75� better
than using int2 and int1 respectively. One side effect of
using large word size is that more memory (on both the
GPU and CPU side) may be required due to the data align-
ment, which consequently incurs additional CPU-GPU
transfer overhead. However, we believe that these costs are
acceptable as compared to the potential benefits. For exam-
ple, suppose we have 16 K packets with uniform size distri-
bution, typically the alignment-induced extra space is in the
order of hundreds of Kilobytes, which incurs tens of micro-
seconds of transfer overhead over a PCIe 2.0 link.

In Fig. 6b, we demonstrate the impact of shared memory
on performance under a variety of configurations. When the
shared memory optimization is completely disabled, the
maximum achievable throughput is less than 22 Gbps. In
stark contrast to this, the peak throughput is up to 6� higher
with the fully-enabled shared memory optimization. By sep-
arately enabling the optimization for the auxiliary buffer
(RabinBuf) and lookup tables (U/T), it is clear to observe
that the latter has greater positive influence on the through-
put, and the plateau of the former occurs much earlier.
However, standalone exploitation of either of the options
produces non-optimal results (see the large gaps against the
‘All-enabled’ solution). In addition, Fig. 6b plots the perfor-
mance of a flat partitioning scheme of the auxiliary buffer, in
which the whole buffer is split into equal-sized and contigu-
ous blocks that are then assigned to each thread sequentially.
The substantial variability in throughput reveals that a holis-
tic optimization using the shared memory is critical for
achieving optimum performance. On Kepler GPUs, enabling
64-bit access to the shared memory of the lookup tables with
cudaSharedMemBankSizeEightByte further improves the run
time of the fingerprinting kernel by about 7.5 percent.

4.2.3 Control Divergence Optimizations

In evaluating the impact of the optimization against control
divergence, we compare its performance with an unopti-
mized version that introduces several additional branches
into the processing loops (one for the inner loop and three
for the outer loop) in order to handle the corner cases, such
as counting how many bytes are left, and determining when
the outer loop should exit. In this experiment, all optimiza-
tions are enabled by default except the divergence optimiza-
tion. As shown in Fig. 7, alleviating divergence can speed

Fig. 7. Control divergence optimization.
Fig. 6. Evaluation of the memory hierarchy optimizations.

SUN ETAL.: REDUNDANT NETWORK TRAFFIC ELIMINATION WITH GPU ACCELERATED RABIN FINGERPRINTING 2139

up performance significantly especially when the number of
threads is greater than 8 K. The throughput at 32 K threads
reaches 121 Gbps that is 1.4� better than that (85.3 Gbps) of
the unoptimized implementation.

We evaluate the performance impact of the amount fin-
gerprints generated at runtime by varying the n least signifi-
cant bits as discussed in Section 3.2.3. n is defaulted to 8 (a
typical value in network scenarios), which yields six finger-
prints for each packet on average. When we set n to 6 to
generate 22 fingerprints averagely, a performance degrada-
tion of 5.6 percent of the Rabin kernel was observed.

4.2.4 Approximate Sorting

Although sorting can be used to alleviate unbalanced work-
load distribution, more attentions should be paid on the
accuracy and associated overhead in order to achieve satis-
factory gains in performance. In this section, we evaluate
the effectiveness of the approximate sorting algorithm by
answering three questions: To what extent can we improve
the performance by sorting? How fast is the approximate
sorting as compared to existing algorithms? How close does
our approach approximate the fully sorted scenario?

Fig. 8a demonstrates the impact of sorting on perfor-
mance in two cases. In the first experiment, we investigate
how the throughput varies as a function of the number of
packets whose sizes follow an uniform distribution. We can
see the marginal drop of performance due to the inherent
overhead of sorting, and insufficient packets fed to the
GPU, which causes low resource utilization. However, by
increasing the packet volume, the throughput scales almost
linearly and eventually outperforms the non-sorted coun-
terpart with increasingly large strides. In the second case,
we conduct testing on a synthetic workload exhibiting mal-
formed size distribution, with which we intentionally
arrange the packets in a CUDA block with the same size
(200) but the last one that is exceptionally large (1,300). The
performance curves reveals that sorting performs equally
well and is also beneficial for uncommon distributions of
packet size. Inevitably, the approximate sorting incurs over-
head that would hurt performance especially for scenarios
where the data volume is small. However, typical GPU-
assisted network applications often batch as much packets
as possible to the device to amortize the PCI-e overhead, so
we believe the approximate sorting is a viable solution for
such applications.

Fig. 8b presents the answers for the second question. We
compare approximate sorting with two commonly-used and

high-performance GPU sorting algorithms, radix sort from
the thrust library [1] and merge sort from CUDA SDK that is
based on [13]. We assume a uniform size distribution for all
the experiments. As shown in the figure, our approach out-
performs the competitors significantly. The approximate
sorting consumes less than 100 microseconds that are the
sum of the execution time of three kernels, reflecting 8.7� in
the best case and 3-4� in average improvement of execution
time. It is worth noting that the overhead of approximate
sorting remains nearly invariant for different workloads,
while merge sort’s cost exhibits gradual increase as the num-
ber of packets increases, and radix sort shows no distin-
guishable characteristics in behavior and performs poorly
under light workloads.

The effectiveness of approximate sorting in part relies on
the accuracy of the algorithm, which is conceptually similar
to counting-based sorting bymapping data items into a fixed
number of buckets instead of performing pairwise compari-
sons. The number of buckets is the key parameter to tune the
accuracy. Fig. 9a plots the size distribution of 16 K packets
before sorting, and Fig. 9b illustrates the closeness of the
results to the fully-sorted counterpart, where we only con-
sider a small bucket size (128) that gives a conservative esti-
mation about accuracy (large bucket size would produce
more accurate sorting results). The two almost perfectly
overlapped curves indicate that the approximate sorting not
only is superior to existing algorithms in performance,
but also retains high degree of accuracy. The axis X in both
figures represents the index of an array where each element
is a packet of different length.

At last, we measure the grouping overhead for full-pay-
load packets, and an overhead of 4.4 percent was observed
when the approximate sorting was enabled. However, this
overhead is avoidable for cases where all packets have the
same length, because we invoke the sorting kernel only on
conditions when the maximum and minimum length of col-
lected packets are not equal.

4.2.5 Concurrent Execution with Streams

Previous micro-benchmarks mainly focus on the evaluation
of individual optimization, which only reports results
excluding the CPU-GPU data transfer overhead. As a com-
mon practice, in this section, we investigate how to improve
the overall performance by leveraging CUDA streams. As
shown in Fig. 10a, the achieved throughputs with streams
(four streams) are consistently much better than the counter-
part with streams disabled across the full range of packet
size. We can also observe the performance degradation
(marked by ‘Stream-Meta’) where the metadata and payload

Fig. 9. Comparison between full-sort and approximate-sort.

Fig. 8. Performance evaluation of sorting.

2140 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 27, NO. 7, JULY 2016

are transferred to the GPU together. The reason is that
splitting the transfer of the metadata and real payload, and
performing sorting on the metadata right after its transfer,
can potentially improve intra-stream concurrency. Fig. 10b
shows how the throughput scales with the number of
streams, exhibiting similar variation over four different
workloads. The performance peakswith four streams.

5 RELATED WORK

Traffic Redundancy Elimination. Traffic redundancy elimina-
tion has been becoming increasingly popular in industry
and academia recently. Since the pioneering work of Spring
and Wetherall [19], protocol-independent redundancy elim-
ination have demonstrated its usefulness in many scenarios.
EndRE [2] is a system proposed to deploy TRE at the end
host to maximize bandwidth savings. It proposed the
SampleByte mechanism that identifies chunk boundary
using a lookup table to accelerate the computation of finger-
prints. Studies in [3], [4] further exploited the potential of
deploying TRE techniques in network-wide environment.
Redundancy elimination has also been explored in wireless
environment [14]. Furthermore, PACK [25] is the first to
propose a predictive approach (as compared to traditional
full-synchronized approach) to eliminating redundant traf-
fic for Cloud applications. Given the broad interests and
approved benefits of TRE, we believe that the proposed
GPU-assisted fingerprinting can be leveraged in these TRE
systems to alleviate performance bottlenecks. For example,
running our fingerprinting algorithm on a low end GPU
can significant outperform the SampleByte approach.

Offloading: GPUs have recently been demonstrated to
show substantial performance improvement for many net-
work workloads. PacketShader [7] achieves 40 Gbps IPv4
and IPv6 forwarding. SSLShader [10] shows compelling
performance enhancement for a secure sockets layer server
by offloading RSA, AES and SHA-1 cryptographic primi-
tives to GPUs. In [24], a GPU-based name lookup system
for content-centric networks is presented, and the experi-
mental results show that large scale name lookup can be
performed on GPU at high speed and low latency. In [20],
the authors reported that the GPU can accelerate regular
expression matching by up to 48� over CPU implementa-
tions. Nuclei [16], a GPU-based network coding system,
shows that a NVidia 8800 GT GPU can outperform an 8-
core Intel Xeon server. Besides the network workloads,
GPU acceleration has been successfully applied to many

other areas such as virtual machines [15] and buffer cache
in operating system [6]. Our work shares some similarities
with these existing studies, such as batching packets to
the GPU and accelerating GPU computation with streams.
However, the indexed compact buffer scheme and the
approximate sorting algorithm are unique in our system,
and we believe both are applicable to other GPU-based
network packet processing systems.

The most closely related work is Shredder [5], which is a
system designed for performing efficient content-based
chunking to support scalable incremental storage and com-
putations. In Shredder, GPU is employed to meet the high
computational requirements. Although both our work and
Shredder use GPU to accelerate computing fingerprints,
there are major differences in two aspects. First, Shredder
focuses on the issues from a system architecture perspec-
tive, and lacks some algorithmic details. Second, application
specific challenges (storage versus network) also lead to
unique designs in our work, such as the indexed compact
buffer scheme and approximate sorting. In addition, due to
the extensive optimizations proposed, our experimental
results show significant performance improvement against
Shredder (about 1.87�) with comparable hardware, and
2.2� speedup was observed with newer GPUs (GTX 780).

6 CONCLUSION

In this paper, we present the design of a GPU-based Rabin
fingerprinting algorithm for efficient redundancy elimina-
tion of network traffic. To maximize performance gains, a
set of optimization strategies is proposed to address the
algorithm-specific needs and domain-specific challenges
such as the buffer scheme and sorting algorithm for net-
work traffic analysis. Our evaluation shows that GPU-
assisted Rabin fingerprinting can achieve up to 40 Gpbs
throughput, greatly advancing the state of the art. In addi-
tion, we believe that the proposed indexed compact buffer
scheme and approximate sorting can also be applied to
other network applications leveraging GPU computation.

ACKNOWLEDGMENTS

This research was supported in part by the National Science
Foundation of China under grants 61272190, 61572179 and
61173166, the Program for New Century Excellent Talents
in University, and the Fundamental Research Funds for the
Central Universities of China.

REFERENCES

[1] Thrust. [Online]. Available: https://developer.nvidia.com/
Thrust, 2015.

[2] B. Aggarwal, A. Akella, A. Anand, A. Balachandran, P. Chitnis, C.
Muthukrishnan, R. Ramjee, and G. Varghese, “EndRE: An end-
system redundancy elimination service for enterprises,” in Proc.
USENIX Conf. Netw. Syst. Design Implementation, San Jose, CA,
USA, Apr. 2010, pp. 419–432.

[3] A. Anand, A. Gupta, A. Akella, S. Seshan, and S. Shenker, “Packet
caches on routers: The implications of universal redundant traffic
elimination,” in Proc. ACM Conf. Appl., Technol., Archit., Protocols
Comput. Commun., Seattle, WA, USA, Aug. 2008 pp. 219–230.

[4] A. Anand, V. Sekar, and A. Akella, “SmartRE: An architecture for
coordinated network-wide redundancy elimination,” in Proc.
ACM Conf. Appl., Technol., Archit., Protocols Comput. Commun.,
Barcelona, Spain, Sep. 2009, pp. 87–98.

Fig. 10. Performance evaluation with streams.

SUN ETAL.: REDUNDANT NETWORK TRAFFIC ELIMINATION WITH GPU ACCELERATED RABIN FINGERPRINTING 2141

[5] P. Bhatotia, R. Rodrigues, and A. Verma, “Shredder: GPU-
accelerated incremental storage and computation,” in Proc.
10th USENIX Conf. File Storage Technol., San Jose, CA, USA,
Feb. 2012, pp. 171–185.

[6] H. Chen, J. Sun, L. He, K. Li, and H. Tan, “BAG: Managing GPU as
buffer cache in operating systems,” IEEE Trans. Parallel Distrib.
Syst., vol. 25, no. 6, pp. 1393–1402, Jun. 2014.

[7] S. Han, K. Jang, K. Park, and S. Moon, “PacketShader: A GPU-
accelerated software router,” in Proc. ACM SIGCOMM Conf., New
Delhi, India, Sep. 2010 pp. 195–206.

[8] M. Harris, J. D. Owens, S. Sengupta, Y. Zhang, and A. Davidson.
(2009). CUDPP: CUDA data parallel primitives library. [Online].
Available: https://github.com/cudpp/cudpp

[9] S. Hong, S. K. Kim, T. Oguntebi, and K. Olukotun, “Accelerating
CUDA Graph algorithms at maximum warp,” in Proc. 16th ACM
Symp. Principles Practice Parallel Programm., 2011, pp. 267–276.

[10] K. Jang, S. Han, S. Han, S. Moon, and K. Park, “SSLShader: Cheap
SSL acceleration with commodity processors,” in Proc. 8th USE-
NIX Conf. Netw. Syst. Design Implementation, 2011, pp. 1–14.

[11] A. Muthitacharoen, B. Chen, and D. Mazieres, “A low-bandwidth
network file system,” in Proc. 18th ACM Symp. Operating Syst.
Principles, Lake Louise, AB, Canada, Oct. 2001 pp. 174–187.

[12] M. Rabin, “Fingerprinting by random polynomials,“ Center Res.
Comput. Technol., Harvard Univ., Cambridge, MA, USA, Tech.
Rep. TR-CSE-03-01, 1981.

[13] N. Satish, M. Harris, and M. Garland, “Designing efficient sorting
algorithms for manycore GPUs,” in Proc. IEEE Int. Symp. Parallel
Distrib. Process., 2009, pp. 1–10.

[14] S. H. Shen, A. Gember, A. Anand, and A. Akella, “REfactoring
content overhearing to improve wireless performance,” in Proc.
Annu. Int. Conf. Mobile Comput. Netw., Las Vegas, NV, USA, 2011
pp. 217–228.

[15] L. Shi, H. Chen, and J. H. Sun, “vCUDA: GPU-accelerated high-
performance computing in virtual machine,” in Proc. IEEE Int.
Symp. Parallel Distrib. Process., 2009, pp. 1–11.

[16] H. Shojania, B. Li, and X. Wang, “Nuclei: GPU-accelerated many-
core network coding,” in Proc. IEEE INFOCOM, 2009, pp. 459–467.

[17] E. Sintorn and U. Assarsson, “Real-time approximate sorting for
self shadowing and transparency in hair rendering,” in Proc.
Symp. Interactive 3D Graph. Games, 2008, pp. 157–162.

[18] R. Smith, N. Goyal, J. Ormont, K. Sankaralingam, and C. Estan,
“Evaluating GPUs for network packet signature matching,” in
Proc. IEEE Int. Symp. Perform. Anal. Syst. Softw., 2009, pp. 175–184.

[19] N. Spring, and D. Wetherall, “A protocol-independent technique
for eliminating redundant network traffic,” in Proc. ACM Conf.
Appl., Technol., Archit., Protocols Comput. Commun., Stockholm,
Sweden, Aug. 2000, pp. 87–95

[20] G. Vasiliadis, M. Polychronakis, S. Antonatos, E. P. Markatos, and
S. Ioannidis, “Regular expression matching on graphics hardware
for intrusion detection,” in Proc. 12th Int. Symp. Recent Adv. Intru-
sion Detection, 2009, pp. 265–283.

[21] G. Vasiliadis, M. Polychronakis, and S. Ioannidis, “Parallelization
and characterization of pattern matching using GPUs,“in Proc.
IEEE Int. Symp. Workload Characterization, Austin, TX, USA, Nov.
2011 pp. 216–225.

[22] G. Vasiliadis, M. Polychronakis, and S. Ioannidis, “MIDeA: A
multi-parallel intrusion detection architecture,” in Proc. 18th ACM
Conf. Comput. Commun. Security, Chicago, IL, USA, Oct. 2011
pp. 297–308.

[23] G. Vasiliadis, L. Koromilas, M. Polychronakis, and S. Ioannidis,
“GASPP: A GPU-accelerated stateful packet processing frame-
work,” in Proc. USENIX Annu. Tech. Conf., Philadelphia, PA, USA,
Jun. 2014, pp. 321–332.

[24] Y. Wang, Y. Zu, T. Zhang, K. Peng, Q. Dong, B. Liu, W. Meng, H.
Dai, X. Tian, Z. Xu, H. Wu, and D. Yang, “Wire speed name
lookup: A GPU-based approach,” in Proc. 10th USENIX Conf.
Netw. Syst. Design Implementation, Lombard, IL, USA, 2013
pp. 199–212.

[25] E. Zohar, I. Cidon, and O. O. Mokryn, “The power of prediction:
Cloud bandwidth and cost reduction,” in Proc. Conf. Appl., Tech-
nol., Archit., Protocols Comput. Commun., Toronto, ON, Canada,
2011, pp. 86–97.

Jianhua Sun received the PhD degree in com-
puter science from the Huazhong University of
Science and Technology, China, in 2005. She is
an associate professor at the College of Com-
puter Science and Electronic Engineering, Hunan
University, China. Her research interests are in
security and operating systems. She has pub-
lished more than 50 papers in journals and con-
ferences, such as IEEE Transactions on Parallel
and Distributed Systems and IEEE Transactions
on Computers.

Hao Chen received the BS degree in chemical
engineering from Sichuan University, China, in
1998, and the PhD degree in computer science
from the Huazhong University of Science and
Technology, China, in 2005. He is currently a pro-
fessor at the College of Computer Science and
Electronic Engineering, Hunan University, China.
His current research interests include parallel
and distributed computing, operating systems,
cloud computing and systems security. He has
published more than 60 papers in journals and

conferences, such as IEEE Transactions on Parallel and Distributed
Systems, IEEE Transactions on Computers, IPDPS, IWQoS, HiPC, and
ICPP. He is a member of the IEEE and the ACM.

Ligang He received the bachelor’s and master’s
degrees from the Huazhong University of Science
and Technology, Wuhan, China, and the PhD
degree in computer science from the University
of Warwick, United Kingdom. He was also a Post-
doctoral researcher at the University of Cam-
bridge, United Kingdom. In 2006, he joined the
Department of Computer Science at the Univer-
sity of Warwick as an assistant professor, and
then became an associate professor. His areas of
interest are parallel and distributed computing,

grid computing and cloud computing. He has published more than
70 papers in international conferences and journals, such as IEEE
TPDS, IPDPS, Cluster, CCGrid, MASCOTS. He also served as a
member of the program committee for many international conferences,
and was the reviewer for a number of international journals, including
IEEE TPDS, IEEE TC, IEEE TASE, etc. He is a member of the IEEE.

Huailiang Tan received the BS degree from Cen-
tral South University, China, in 1992, and the MS
degree from Hunan University, China, in 1995,
and the PhD degree from Central South Univer-
sity, China, in 2001. He has more than eight years
of industrial R&D experience in the field of infor-
mation technology. He was a visiting scholar at
Virginia Commonwealth University from 2010 to
2011. He is currently an associate professor at
the College of Computer Science and Electronic
Engineering, Hunan University, China. His

research interests include embedded systems and GPU architectures.

" For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

2142 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 27, NO. 7, JULY 2016

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

