
An Execution-flow Based Method for Detecting Cross-Site Scripting Attacks

Qianjie Zhang, Hao Chen, Jianhua Sun
Adv. Internet and Media Lab

School of Computer and Communication, Hunan University
Changsha, China

E-mail: jhsun@aimlab.org

Abstract—We present an execution-flow analysis for
JavaScript programs running in a web browser to prevent
Cross-site Scripting (XSS) attacks. We construct finite-state
automata (FSA) to model the client-side behavior of Ajax
applications under normal execution. Our system is deployed
in proxy mode. The proxy analyzes the execution flow of
client-side JavaScript before the requested web pages arrive at
the browser to prevent potentially malicious scripts, which do
not conform to the FSA. We evaluate our technique against
several real-world applications and the result shows that it
protects against a variety of XSS attacks and has an
acceptable performance overhead.

Keywords-XSS; FSA; JavaScript; Ajax

I. INTRODUCTION

JavaScript is the cornerstone of Ajax applications. Ajax
developers leverage it to enhance user experiences such as
richer user interfaces and lower latency of interaction. But
unfortunately, it also increases the possibility of being
affected by XSS attacks. It is the most common use of
JavaScript to compose malicious codes. XSS vulnerabilities
make it possible for an attacker to inject malicious content
into web pages generated by trusted web servers. Since the
malicious scripts run with the same privileges as the trusted
script, they can steal a victim user’s private data or take
unauthorized actions without users’ permission. How to
distinguish authorized from unauthorized scripts becomes
the key to detecting XSS attacks.

In this paper, we built an execution-flow analyzer for the
client side Ajax web applications. We analyze the JavaScript
code on the client side and produces FSAs to model client
side program behavior. We put these FSAs in a proxy to
monitor all execution flow of the browser. If the flow
doesn’t match the pre-built FSAs, it would be an XSS attack.
We consider the following four aspects to design our
system:

� JavaScript is the client-side programming language
for Ajax applications. It also the most common
language for attackers to inject malicious scripts into
Ajax. And the injected XSS will change the
execution flow against that of the normal JavaScript.

� JavaScript is an interpretive programming language,
the web browser must interpret scripts line by line
before one web page is loaded. When a browser
renders a web page, it parses and executes script
codes.

� The web application developers know exactly which
scripts should be executed for the application, so
other scripts occur at runtime may be potential
attacks.

� XSS is usually inserted into the most frequently
visited part of the web application. But every coin
has two sides, this not only allows an attacker to
easily attack the users, but also makes malicious
scripts easy to be detected.

Our work is inspired by that of R. Sekar’s FSA [2], who
used program analysis methods to build system call monitor
and intrusion detector for traditional applications.
Accordingly, we analyze function call of JavaScript to detect
XSS for web applications. The FSA-algorithm captures
program behaviors in terms of sequences of function calls of
JavaScript. Figure 1 illustrates a sample program and its
automaton learned by FSA-algorithm. The automaton
includes a set of state nodes S (S = {1, 2, 3, 4, 5, 6, 7, 8, 9,
10, 11}), and a set of edges (E = {f0, f1, f2, f3, f4, f5}). Both
S and E are finite sets. Each element in S records a state of
the program. If a particular function call in a particular state
triggers a transition from that state to another one, that
transition is labeled with that function call.

An FSA can capture infinite numbers of sequences of
random length using finite storage. Its states and edges can
record short and long range correlations. Also, an FSA can
be traversed in different ways. So it can capture structures in
programs such as loops and branches. Besides these
advantages, previous researches on finite-state-based
learning have some identified negatives: There is no
algorithm for constructing FSAs from function call traces.
Instead, they construct FSA states and edges from sequences
relying on human insight and intuition. Moreover, how to
learning compact FSA is a hard problem. Reference [1]
shows that learning perfect FSA is as hard as integer
factorization.

Against these drawbacks, we present an automatic and
effective method of learning compact FSAs to characterize
Ajax behaviors. The main contributions of this paper are
summarized as follows: We introduce a solution for
mitigating XSS attacks by matching execution-flow of Ajax
applications against the pre-build FSAs, which captures the
well-behaved client-side execution of JavaScript. Our
technology neither requires to modify source codes of Ajax
applications, nor be deployed in user’s browser. Thus, each
web site can be protected from XSS exploits transparently

160

1. f0;
2. for (f3) {
3. f5(f1);
4. if (f2) …;
5. else f3;
6. f1;
7. if (…) f4;
8. else f3;
9. f2;
10. }
11. f4;

321 4

7

6

5

8

f0 f3 f5
f2

f2
f3 f1 f4

f3
11

f4 f1

9
f3

f1

f2

Figure 1. A sample program and its automation learned by FSA-algorithm.

for its visitors. Our system is deployed in a proxy and
doesn’t need the knowledge of the server-side program. So it
can be used with a variety of server technologies. Finally,
we demonstrate that our techniques can analyze Ajax’s
behavior and preventing authentic XSS attacks.

The rest of this paper is structured as follows. In Section
we describe how to learn FSAs from function-call

sequences of JavaScript. In Section , we introduce our
XSS detection system. Section presents the evaluation
of our technology against several Ajax applications. In
Section , we present related work on detecting and
preventing XSS attacks. Finally, Section concludes.

II. LEANING FINITE-STATE AUTOMATA

Our learning algorithm is to trace the normal execution
of JavaScript application. As shown of a simplified example
in Figure 1, we construct the FSA with function call name,
file name and the line number where the call is invoked.
Each distinct line number or file name corresponds to a
different state of the FSA. Each transition between states is
labeled with a particular function call. To construct the
transitions, we use both the current triple of [(File Line),
Func] and the next triple of [(NextFile NextLine),
NextFunc]. The invocation of the current function results in
the addition of a transition from the state (File Line) to
(NextFile NextLine) which is labeled with Func. The
construction process continues through many different
executions of program, with each time possibly adding more
states and/or transitions. Figure 2 illustrates this process.

A. Function Call Tracing
Currently, there are already several tools for function call

tracing. For instance, Firebug [3] and LiveHTTPHeaders [4]
for Firefox, Web Development Helper [5] and Internet
Explorer Developer Toolbar [6] for IE. Most of them are
program debugging tools, which analysis a program by But
these debuggers aim to test and debug target programs, not

suitable for collecting information continuously.

Thus, we chose another dynamic tracing tool DTrace. It
is a dynamic troubleshooting and analysis tool first
introduced in the Solaris 10 and OpenSolaris operating
systems. Tracing programs are written in the D
programming language. D scripts consist of a list of one or
more probes, and each probe is associated with an action. A
probe may analyze the run-time situation by accessing
the call stack and context variables and evaluating
expressions. Then some information can be printed out or
logged. We only use probes related to JavaScript to gather
useful information of function-call sequences continuously.

B. Dealing with Event-driven JavaScript
Browsers execute JavaScript in an event-driven fashion.

Once JavaScript code of a web page is loaded, users can
interact with the page in a variety of ways. As events occur,
the browser executes a corresponding event handler to
respond to the user interactions. How handlers execute
depends on user behavior and the interactions with browser.
If we construct only one FSA to model the behavior of an
Ajax application, it will be inaccurate. So, we build different
FSAs for each JavaScript event to make the analysis more
accurate. This also can reduce the number of sequences in
real-time monitoring. Since each user interaction only
involves several events, not all of the events of a program.

C. Removing JavaScript of Browser
For our system, Dtrace has more obvious advantages

than other tracking tools. However, Dtrace works at the
operating system level, so it can’t distinguish where the
current running JavaScript function comes from: the web
application or the browser. These events, such as mouse
clicks and movements, keyboard presses and the creation
and initialization of the JavaScript events, etc. can trigger
browser’s JavaScript functions. There are 423 script files
containing JavaScript in the Firefox 3.0, which contains tens

· [(f1, 1), fun1] [(f1, 3), fun2] [(f1, 6), fun1]

· [(f1, 1), fun1] [(f1, 5), fun3] [(f1, 6), fun1]

f1,1
f1,3

f 1,5

f1,6
fun1

fun2

fun3

fun1
fun1 end

Figure 2. Two traces produced by a program and the generated automaton.

161

of thousands of JavaScript functions. Thus, in order to
construct FSAs only characterizing the Ajax application’s
behavior, we need to remove the browser’s JavaScript from
the collected function-call sequences, and satisfy the
requirement of high efficiency for real-time monitoring.
There are two following difficulties:

Client

Sequence file

FSA

XSS

Collect function-call

FireFox

Dtrace

Proxy

 R
eq

ue
st

a
pa

ge

 R
es

po
ns

e
us

er

 If the page exists in the cache,

Server

 I
f t

he
 p

ag
e

do
es

n’
t e

xi
st

in
 th

e
ca

ch
e

or
 b

e
m

od
ifi

ed
 a

fte
r t

he
 la

st-
vi

si
t,

 F

et
ch

 it
 fr

om
 se

rv
e r

 R
et

ur
n

th
e

pa
ge

 (m
ay

 h
as

 b
ee

n
at

ta
ck

ed
)

sequences of JS

 I
f X

SS
 is

 d
et

ec
te

d,
 re

m
ov

e

m
al

ic
io

us
 c

od
es

 S
av

e
it

to
 th

e
ca

ch
e

return it to the client

 Match it against FSA

Figure 3. The process of runtime monitoring.

� How to distinguish where the current function call is
made from.

� How to quickly remove the browser scripts to speed
up the FSAs construction and the XSS detection,
which have to deal with numerous JavaScript
function calls. Especially in the real-time monitoring,
because the user is waiting for the response.

For the first issue, since the browser files that include
JavaScript codes are known. It is easy to determine where a
function call is invoked from. For the second one, we group
the browser files by their initials. When a function is
invoked, we gather the file name from where the function is
called, and then match it against the browser file names
which have the same initials. Comparing with the
non-grouping method, which needs to match 423 file names
each time, the grouping one needs only 16.27 on average.

D. Constructing perfect FSA
An open problem in dynamic analysis is code coverage,

which describes the degree to which the source code of
a program has been tested. Analysis in [[7]] shows that the
degree to the detected vulnerabilities is in direct proportion
to the code coverage. For our analysis, due to the factors
such as the conditional branches of the program and the
event-driven nature of JavaScript, we can’t achieve 100%
code coverage. If some areas of codes are not been covered,
but the real-time detection reach the uncovered areas, it will
cause a false alarm. Thus, how to collect the function-call
sequences as comprehensive as possible to achieve high
code coverage becomes particularly important.

To solve the above problem, we use both automatic and
manual methods. To collect the function-call sequences, our
analysis needs to simulate users’ interactions with Ajax
applications. At present there are some existing tools, such
as Crawljax [8] and AjaxTracer [9]. They obtain the
JavaScript events on a web page by statically analyzing the
original code of the page, and then trigger them. Comparing
to the manually–trigger method, these techniques help us to
gather function-call sequences more comprehensively and
automatically. But these automatic tools also have their own
disadvantages: they can’t simulate users’ input well, which
is an important part of the users’ interactions with Ajax
applications. So we also need to simulate the user’s input
manually. We test the Ajax applications multiple times with
multi-cases to achieve high code coverage.

III. XSS INTRUSION DETECTION

A. Runtime Monitoring
We deployed a proxy to protect users from XSS attacks.

Figure 3 presents how it works. When a user request is

detected by the proxy, it checks whether the requested page
exists in the cache. If so, the proxy returns the page to the
user. Otherwise, it means the page has not been accessed or
modified after the last-visit. Then the proxy fetches it from
the server. When the code of the requested page arrives, the
proxy executes them in the browser and uses DTrace to
collect function-call sequences. The collected sequences are
compared with the pre-built FSA. Once an inconsistency is
found, it is marked as a potential attack.

The monitor ensures that the function-call sequences
match against a sequence of the FSA. For each function call
intercepted, we proceed as follows:

� In a given state, the monitor checks if the next
function call matches any one of the labels of the
out-degree transitions. If so, the FSA follows it to
the target state of the transition. If not, mark it as a
possible XSS attack.

� Update the state of the FSA to the new state. If the
new state is not in the FSA, it is marked as a
possible XSS attack.

� For all the possible attacks, to determine whether
they are XSS, we need do some further analysis,
which is discussed later in the following paragraph
in detail. If an XSS attack is detected, we log it and
check whether it exists in possible location (such as
the back-end database of the Ajax application, XML

162

documents, etc.). If it exists, it is flagged as an XSS
attack. Then we remove the malicious scripts and
send the harmless page to users.

1) Reducing the false alarm: During the function-call
sequences collection progress, we maximize the code
coverage to reduce the false alarm. But it’s almost
impossible to achieve 100% code coverage due to the
growing size of code and complexities of client-side
JavaScript. Through an investigation of XSS and its attack
modes, we found that victims suffering from XSS attacks
are always compromised by malicious content injected into
web pages with vulnerabilities, not by modifying the source
codes. Thus, when suspicious scripts are detected, we further
check where these scripts come from. If they come from the
source codes of the program, they are regarded as normal
program behaviors and we add them to FSAs to make the
training set more completely. Otherwise, it is an XSS.

2) Proxy: Building a proxy based architecture has the
following advantages. First, it separates the server from the
XSS-prevention system, which does not have the limitation
of tightly binding the server being protected to a specific
operating system (in our case Solaris). Second,
a proxy server accelerates service requests by retrieving
content saved for a previous request made by the same client
or even other clients. For an attacked page, we remove
malicious scripts at the first time when the page is accessed.
Then the harmless page is cached. Our proxy could response
to users directly when it is accessed at the second time.

B. Post-Intrusion Analysis
Our real-time monitoring has the capability to detect

persistent and reflected XSS. Both of their payloads arrive to
the server. But there is another kind of XSS called
DOM-based XSS which does not rely on the payload
embedded by the server in same response
page. DOM-based XSS uses some DOM object operations
of normal Ajax applications to attack user, entirely on client
side. Thus, it can escape from the real-time monitoring.

To detect DOM-based XSS, we present a post-intrusion
detection method -- analyzing the attacked web application
and constructing FSAs to model its behavior. The process of
collecting function-call sequences and constructing FSAs for
the attacked program (‘Dirty’ FSA, DFSA) is exactly the
same as the normal program (‘Clean’ FSA, CFSA). Our
post-intrusion analysis detects intrusion by comparing
DFSAs to CFSAs: if we detect a new state in DFSA which
is not in CFSA, or a transition from current state to the next
state in DFSA is not labeled with the same function call as
the CFSA, an XSS attack is to be marked. As the
post-intrusion analysis is a full function check, regardless of
a link that contains malicious scripts or a link navigating to a
malicious site to perform an XSS or load Trojan scripts, we
can detect the execution of its malicious functions.

IV. EXPERIMENTAL EVALUATION

To evaluate the effectiveness of our FSA-based
algorithm and techniques, we apply them in several Ajax
applications.

� Blog, a blog application which is written by students.
It has simple functions, accordingly the number of
FSA and its state number are small.

� Jibberbook, a message board application which
leverages an external library to filter message
content.

� Metatron, a page-based online chat program, which
is used as the manager of Project Voodoo.

� AjaxIM, a widely-used online chat application.

A. Summary
Our analysis constructed FSAs for the above applications

successfully. We attacked these applications by the most
representative XSS, such as XSS listed in XSS Cheat Sheet
[10], which includes complex examples of XSS attack
strings. Many of these examples are capable of damaging
real-word web applications and their defenses. To fully
exercise vulnerabilities, we embedded attack strings in the
pages which were tested. We then used our XSS-intrusion
detection system to defend against attacks and evaluated
whether our XSS-intrusion detection system worked well.
We recorded the number of states of FSAs, the time
overhead of the real-time and post-intrusion detection, and
the XSS defense effectiveness.

B. XSS Defense Effectiveness
Experiment results are summarized in TABLE I. The

living document XSS Cheat Sheet contained 111 vectors at
the time of testing, which has 93 XSS attack examples,
include 75 persistent XSS, 11 reflective XSS and 7
DOM-based XSS. We embedded all the attack strings into
the tested Ajax applications, such as the message board of
Jibberbook, the user property and chat window of AjaxIM,
which contain XSS vulnerabilities. To load an XSS-based
Trojan, we made a little modification to five strings of
persistent XSS strings, and injected them into Jibberbook.

For reflective XSS vulnerabilities, they occur commonly
in HTTP query parameters or in HTML form submissions,
and are used immediately by the server to generate a page
for the user. For persistent XSS vulnerabilities, they are
stored in the server, and then included in normal pages
returned to other users without proper HTML sanitization. In
order to attack clients, both reflective and persistent XSS
must go through the server. So they can be detected by our
intrusion-prevention proxy. As shown in TABLE I, all of the
75 persistent XSS and 11 reflective XSS are detected by
both runtime monitor and post-intrusion analysis. For the
DOM-based XSS, they attack victims entirely on the client
side, which prevents our runtime monitor from stopping
them. But we can detect them by using the post-intrusion
analysis. We disclosed all the 7 ones shown in TABLE I.

163

C. Time Overhead
To evaluate the overhead of our experiment, we collect

some meaningful information which may impact the results
of XSS detection. For instance, the amount of code of the
Ajax application being tested, it directly affects the state
number of the Clean FSAs. And the number of states
influences the time overhead of runtime and post-intrusion
detection. We list all of them in TABLE II.

Time overhead results for this experiment are
summarized in TABLE III. These data are relevant to the
tested Ajax applications and the experiment environment.
Sclean and TCFSA are directly affected by LOCjs. Since it is
obvious that larger code base of client-side procedures leads
to a bigger Sclean. In addition, they are related to the writing
expression of the program. For instance, in order to prevent
attacks, developers of Metatron wrote more than one
statement in one line that decreases the readability of the
source codes. As Sclean related to the lines of code, it is only
58 in Metatron, which is less than other Ajax applications.
Sdirty depends on the malicious codes which are embedded
in the program. For instance, Trojan loads one or more script
files into the client-side browser, which makes the state
number of victim program’s DFSA larger. That is why there
is a total of 1781 status of Jibberbook’s DFSA (we injected
Trojan in Jibberbook), which is more than other Ajax
applications and cost more time to detect them.

TCFSA and TDFSA are the time overhead of the
construction of CFSA and DFSA, which consists of two
parts: Ttrace and TFSA. Ttrace refers to the time overhead of
gathering the function-call sequences, including the time
spent on automated collection and manual collection. TFSA
is the time spent on constructing FSA from function-call
sequences. They are relevant to the functions of the tested
program, the efficiency of the automated tools, etc. TCFSA,
TDFSA, Tfirst, Tsecond and Tpost-intrusion, these time-related
information are influenced by many factors, such as the
hardware of the proxy server, congestion status of networks,
as well as the database. For instance, if the database of
Jibberbook stores huge amounts of messages from users, it

consumes a lot of time to load them. Tsecond is the time spent
on the second-time visit. Since when a page is visited at the
second time, the harmless page has been cached by proxy. If
the page has not been modified after the first-time visit, the
proxy can send the cached content to user directly. So in
general, Tfirst is bigger than Tsecond. As seen from the above
results, our method can prevent a variety of XSS attacks and
has an acceptable performance overhead.

TABLE I. XSS DEFENSE EFFECTIVENESS TEST RESULTS

Types of Attack The Number
of Attack

Runtime
Detection

Post-Intrusion
Detection

Reflective XSS

V. RELATED WORK

By now there have been a variety of defensive
techniques to prevent XSS, including the following aspects:
static analysis, dynamic analysis, black-box testing,
white-box testing, anomaly detection, etc. Generally, these
approaches are deployed on the client-side or server-side to
protect web users from XSS injection attack.

Server-side protection: At present, many automated testing
tools have been in existence, such as black-box testing tools
[11] and white-box testing tools [[13], [14]], which are
deployed on the server side. They have already been
successfully applied in practice. They can help web site
developers and administrators to detect the potential XSS
vulnerabilities. But the limitation is the significant number
of false positives and false alarms. These are all third-part
tools, which need the help of web site developers to fix the
detected vulnerabilities. This incurs extra costs.

Client-side protection: To remedy the shortcomings of
server- side protection, there have been several defensive
strategies which are deployed on the client side. In [15], a
client-side mechanism for detecting malicious JavaScript is
proposed. The system consists of a browser-embedded script
auditing component, and an IDS that processes the audit
logs and compares them to signatures of known malicious
behavior or attacks. With this system, it is possible to detect
various kinds of malicious scripts, not only XSS attacks.
However, the system has significant weakness: it can only
detect the XSS attacks whose behavior haven been known.
Attacks that do not anticipated by the signature authors are
left unprotected by the scheme.

The two main aims of XSS attacks are stealing the
victim user’s sensitive information and invoking malicious
acts on the user’s behalf. Noxes [16] provides a client-side
web proxy to block URL requests by malicious content
using manual and automatic rules. Reference [17] presents
another approach: tracking the flow of sensitive information
in the browser to prevent malicious content from leaking
such information. Both of these projects focus on ensuring
confidentiality of sensitive data (e.g., cookies) by analyzing
the flow of data through the browser, rather than preventing
unauthorized script execution. They can defeat only the first
goal of XSS attacks. It would be defeated by attacks that do
not violate same-origin policies. By contrast, our approach is
based on analyzing function-call sequences of JavaScript to
detect unauthorized scripts, we can defeat both objectives of
XSS attacks.

All client-side solutions share the same drawback: the

11 11 11
Persistent XSS 75 75 75

DOM-Based XSS 7 0 7
Total 93 86 93

TABLE II. THE INFORMATION COLLECTED IN OUR
EXPERIMENT

LOCtotal The total code amount of the Ajax application
LOCjs The code amount of client-side JavaScript

Sclean/Sdirty The total number of states of CFSA/DFSA
TCFSA/TDFSA The time spent on CFSA/DFSA construction

The average time spent on visiting every page of
the program at the first time Tfirst

The average time consumption of the
second-time visiting Tsecond

Tpost-intrusion
The time spent on XSS-intrusion detection after

the program is attacked

164

necessity to install updates or additional components on each
user’s workstation. While most novice users lack of safety
awareness, we cannot expect them to deploy a client-side
XSS defense, which makes client-side defense be severely
limited in practice.

Server and client joint defense: There is an alternative
approach in which server and client work in collaboration
with each other. The server annotates the delivered content
and provides information on the legitimacy or level of
privileges of scripts. The Web browser is then responsible
for checking and enforcing these annotations.

If web browsers are capable of distinguishing authorized
from unauthorized, it can build up a robust XSS prevention
system. This vision was first espoused in BEEP [18]. The
authors present two policies. First, labeling elements in the
HTML source, which are assumed to contain malicious code.
So the browser can know whether a script in the DOM tree
contains user-provided content or not. The modified browser
verifies each script with respect to the policy and denies
unauthorized script execution. Second, a whitelist policy,
which allows a script to execute only if it is known-good.

These kinds of techniques in which server and client
collaborate with each other can better distinguish malicious
scripts from normal. But they all share two disadvantages:
they need to modify not only the source code of the web
application, but also of the browser. However, an ideal XSS
defense approach should has no necessary to modify the
source code of web applications and install additional
components on user’s workstation.

VI. CONCLUSION

We present the design and implement of an
execution-flow analysis based system for JavaScript
programs running in a web browser to prevent XSS attacks.
It can produce function-call sequences of Ajax application,
so as to build up FSAs to express the normal program
behavior. Our system can be deployed in proxy mode. The
proxy analyzes the execution flow of client-side JavaScript
before the requested web pages arrive at the browser. In
addition to the dynamical tracing and realtime protection,
the system also supports postmortem analysis of XSS
attacks. In general, the system successfully prohibits and
removes a variety of XSS attacks, maximizing the protection
of web applications.

ACKNOWLEDGMENT

This paper is supported by the National Natural Science
Foundation of China under grants 60803130 and 60703096,
and the National Key Fundamental Research Program (the
973 Program) of China under grant 2007CB310900.

REFERENCES

[1] M. Kearns and L. Valiant, “Cryptographic limitations on learning
boolean formulae and finite automata,” J. ACM, vol 41, no. 1, pp.
67-95, 1994.

[2] R. Sekar, M. Bendre, D. Dhurjati, and P. Bollineni. “A fast
automaton-based method for detecting anomalous program
behaviors,” IEEE Symposium on Security and Privacy, 2001, pp.
144-155.

[3] Mozilla. Firebug. http://getfirebug.com/.
[4] Mozdev. LiveHTTPHeaders. http://livehttpheaders.mozdev.org/.
[5] Nikhil Kothari. Web Development Helper.

http://projects.nikhilk.net/WebDevHelper/.
[6] Microsoft Corporation. Internet Explorer Developer Toolbar.

http://www.microsoft.com/downloadS/details.aspx?familyid=E59C3
964-672D-4511-BB3E-2D5E1DB91038&displaylang=en.

[7] M. H. Chen, M. R. Lyu, and E. Wong. “An empirical study of the
correlation between code coverage and reliability estimation,” IEEE
METRICS’96, New York: Albany, March 1996, pp. 133–141.

[8] A. Mesbah, E. Bozdag, and A. van Deursen. “Crawling Ajax by
inferring user interface state changes,” the 8th Int. Conf. on Web
Engineering (ICWE), IEEE Computer Society, 2008, pp. 122–134.

[9] Myungjin Lee, Sumeet Singh, and Ramana Rao Kompella.
AjaxTracker. http://www.cs.purdue.edu/synlab/ajaxtracker/.

[10] R. Hansen, “XSS (cross site scripting) cheat sheet esp: for filter
evasion,” 2008. [Online]. http://ha.ckers.org/xss.html.

[11] M. V. Gundy and H. Chen. “Noncespaces: using randomization to
enforce information flow tracking and thwart crosssite scripting
attacks,” the 16th Annual Network and Distributed System Security
Symposium (NDSS), San Diego, CA, USA, February, 2009, pp.
56-64.

[12] Sean McAllister, Engin Kirda, and Christopher Krügel. “Expanding
human interactions for in-depth testing of Web applications,” the
11th Symposium on Recent Advances in Intrusion Detection (RAID),
Boston, USA, September 2008.

[13] Y.-W. Huang, F. Yu, C. Hang, C.-H. Tsai, D. Lee, and S.-Y. Kuo.
“Securing web application code by static analysis and runtime
protection,” the International World Wide Web Conference
(WWW’04), May 2004, pp. 40–52.

[14] N. Jovanovic, C. Kruegel, and E. Kirda. “Pixy: a static analysis tool
for detecting web application vulnerabilities,” the IEEE Symposium
on Security and Privacy, May 2006, pp. 258–263.

[15] O. Hallaraker and G. Vigna. “Detecting malicious JavaScript code in
Mozilla,” IEEE Int. Conf. on Engineering of Complex Computer
Systems (ICECCS), Santa Barbara, CA, USA, June 2005, pp. 85-94.

[16] E. Kirda, C. Kruegel, G. Vigna, and N. Jovanovic, “Noxes: a
client-side solution for mitigating cross-site scripting attacks,” the
21st Annual ACM Symposium on Applied Computing, Dijon, France,
April 2006, pp. 330-337.

[17] P. Vogt, F. Nentwich, N. Jovanovic, E. Kirda, C. Kruegel, and G.
Vigna, “Cross-site scripting prevention with dynamic data tainting
and static analysis,” the 14th Annual Network & Distributed System
Security Symposium, San Diego, CA, USA, February 2007, pp.
74-83.

[18] T. Jim and N. Swamy and M. Hicks. “BEEP: browser- enforced
embedded policies,” the 16th International World Wide Web
Conference (WWW2007), Banff, 2007, pp. 601-610.

TABLE III. LINES OF CODE OF APPLICATIONS AND TIME OVERHEAD OF XSS-INTRUSION DETECTION

Ajax App LOCtotal LOCjs Sclean Sdirty TCFSA m TDFSA m Tfirst ms Tsecond ms Tpost-intrusion (s)
Blog 1K 300 63 107 5 10 1364 358 14.7

Metatron 2K 1054 58 245 14 18 758 216 15.2
Jibberbook 21K 560 110 1781 11 17 2487 521 30.6

AjaxIM 9K 9725 986 1568 27 34 856 326 45.2

165

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Required" settings for PDF Specification 4.01)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

