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Abstract—GPUs (Graphics processing units) have been increas-
ingly adopted for large-scale graph processing by exploiting the
inherent parallelism. There have been many efforts in designing
specialized graph analytics and generalized frameworks. The two
classes of graph processing systems share some common design
choices, and often make specific trade-offs. However, there is no
characterization study that provides an in-depth understanding
of both approaches. In this paper, we analyze two GPU-based
graph processing systems (Enterprise and Gunrock) from the
perspective of breadth-first graph traversal. We conduct both
high-level performance comparison and low-level characteristic
evaluation such as workload balancing, synchronization, and
memory subsystem. We investigate the differences based on
10 real-world and synthetic graphs. Our results reveal some
uncommon findings that would be beneficial to the research and
development of large-scale graph processing on GPUs.

Index Terms—GPU, Graph Processing, Breadth-First Traver-
sal, BFS

I. INTRODUCTION

With the rapid development of the Internet, processing large-
scale graph structures with millions or billions of vertices and
edges has become a hot research topic in both the academia and
industry. Graph analytics are becoming increasingly important
for many applications spanning areas from scientific computing,
advertising, biological networks to social networks. For exam-
ple, finding the shortest paths of on-line maps, the citation
relationships among twitter forwarding, and the purchasing
preference in E-commerce webs, are all typical scenarios that
heavily rely on efficient graph computation.

As a result, in the last several years, we have witnessed
a growing interest in distributed graph processing, such as
Pregel, GraphLab, PowerGraph, GPS, and Mizan, which are
purposely-built distributed graph computing systems with easy-
to-use programming interfaces and reasonable performance
under large-scale workloads. The prominent one is Pregel [7],
which was firstly proposed as a programming model to address
the challenges in parallel computing of large graphs. The high-
level programming model of Pregel plays a significant role in
abstracting architectural details of parallel computing from pro-
grammers. Specifically, the vertex-centric programming model
proposed by Pregel greatly relieves the efforts of performing
computation on large-scale data-intensive graphs, and provides
high expressibility for a wide range of graph algorithms.
Inspired by Pregel, a number of graph computing frameworks
focusing on heterogeneous accelerators has emerged, such as
Medusa [14] and TOTEM [5].

With the advancement of GPU hardware and the introduction
of GPU programming frameworks such as CUDA and OpenCL,
GPU has become a more generalized computing device. General
purpose computing on GPU (GPGPU) has found its way into
many fields as diverse as biology, linear algebra, cryptog-
raphy, image processing, and so on, given the tremendous
computational power provided by GPUs such as massive
parallel threads and high memory bandwidth as compared
to CPUs. In parallel to this trend, GPUs are increasingly
leveraged to accelerate graph applications with either low-
level hardwired implementations [3], [8], [6] or high-level
programmable frameworks to hide the hardware intricacies [14],
[15], [2], [11], [10] without sacrificing much performance.

Medusa [14] is a general purpose GPU-based graph pro-
cessing framework that provides high-level APIs for easy
programming and scales to multiple GPUs. CuSha [2] is a graph
processing framework that enables users to write vertex-centric
algorithms on GPU, proposing a new graph representation
called G-Shards to minimize non-coalesced memory accesses.
Gunrock [11] is a high-performance graph processing library
targeting GPUs, and it implements a data-centric abstraction.
At the same time, another line of work focuses on hardwired
implementation of specific graph algorithms. A. Davidson et al.
[3] present three parallel-friendly and work-efficient approaches
to solve the Single-source Shortest Paths (SSSP) problem
on GPUs. D. Merrill et al. [8] present a Breath-first search
(BFS) parallelization focused on fine-grained task management.
Enterprise [6] is the state-of-the-art implementation of BFS
with specifically designed optimizations for GPUs.

These endeavors greatly advances the research of GPU-based
graph processing. However, little is known about the particu-
larities between the generalization and specialization of graph
analytics on GPUs. To what extend, can graph frameworks
approach the performance of hardwired implementations? Does
specialization always outperform generalization across all types
of graphs? How to identify the key metrics that are tightly
related to the performance difference, given the common goal
of optimizations in both camps. To answer these questions, in
this paper we conduct a thorough evaluation on two state-of-
the-art implementations from the perspective of generalization
and specialization of graph processing; one is Enterprise [6],
and the other is Gunrock [11]. We use Breadth-First Search
as a case study because it is a building block for many graph
applications including single source shortest path, betweenness
centrality, and closeness centrality. The main contributions of



this paper include:
• We conduct an extensive evaluation on two stat-of-the-art

GPU graph processing systems, which are representatives
for generalized and specialized breath-first traversal sys-
tems. The experiments are performed from the perspective
of both overall performance comparison and low-level
crucial metric characterizations including load balancing,
synchronization, and memory related issues, which helps
understand the generalization and specialization of GPU
graph analytics.

• Our evaluation is performed on a wide set of representative
graph datasets that include real world scale-free graphs,
road networks, and synthetic graphs. The results not only
confirm observations made in existing work, but reveals
some findings that will have important implications for
future research on GPU-based graph processing.

II. PRELIMINARIES AND BACKGROUND

In this section, we present the necessary background on the
graph programming model and GPU architecture.

A. GPGPUs

Current generation of general-purpose GPUs typically has
thousands of processing cores. For example, the NVIDIA Pascal
GPU GTX 1080 consists of 4 Graphics Processing Clusters
(GPCs), 20 Streaming Multiprocessors (SMs). Each GPC has
5 SMs, and each SM is equipped with up to 128 CUDA cores,
256 KB of register file capacity, a 96 KB shared memory unit,
and 48 KB of total L1 cache. In addition to the L1 cache, the
full GP104 chip used in GTX 1080 ships with a total of 64
ROPs and 2048 KB of L2 cache. with 20 SMs, the GTX 1080
GPU has a total of 2560 CUDA cores and 160 texture units.
The off-chip global memory has a much larger size (typically
in GB range) and longer access latency.

B. GPU-based Graph Analytics and Gunrock

Pregel [7] is the first programming model for large-scale
graph processing that is inspired by the Bulk Synchronous
Parallel (BSP) model. In this model, programmers express the
parallelism of graph computation by a sequence of iterations
called super-steps. The computation model of Pregel is vertex-
centric and based on message passing.

Different from the previous GPU graph programming models
that focus on sequential computation steps, Gunrock [11]
proposes a data-centric parallel programming model for GPUs.
The key abstraction of Gunrock’s data-centric model is the
frontier, which represents a subset of edges or vertices of the
graph that is currently in active state. Gunrock manipulates the
frontier with three operators. The advance operator produces
a new frontier by visiting the neighbors of the current frontier.
The filter operator generates a new frontier by selecting a subset
of the current frontier based on certain policies provided by
programmers. A compute operator defines an operation on all
vertices or edges in the input frontier. A programmer-specified
compute operator can be used together with the three operators.

C. Breadth-First Search and Enterprise

BFS algorithm is the building block for many graph
applications, and the Graph 500 uses BFS to benchmark high
performance hardware and software systems on power-law
graphs. The traditional top-down BFS algorithm starts with a
source vertex, and manipulates a data structure usually referred
to frontier queue by adding unvisited neighboring vertices of
the source to the queue. The vertices in the frontier queue
are marked as visited, and will be used for expansion in the
subsequent traversal. Iteratively, the BFS algorithm inspects
the neighboring vertices of all the queued nodes and inserts
new vertices into the frontier. The frontier produced by the
preceding level will be used for expansion in the next level. In
this way, the algorithm is executed repeatedly level by level
until no vertex remains unvisited.

Enterprise [6] is a GPU-based system designed for breadth-
first graph traversal, which leverages the massive threads and
high memory bandwidth of GPUs to optimize the execution
flow and data access pattern of BFS algorithm. Enterprise
achieves high performance using three novel techniques. First,
streamlined GPU threads scheduling is proposed to not only
eliminate thread synchronization in frontier queue generation,
but also remove duplications in the frontier queue to avoid
useless work during the execution. Second, GPU workload
balancing via frontier classification is used to mitigate inter-
thread workload imbalance by classifying the frontiers based
on the out-degrees of vertices. Third, GPU-aware direction
optimization is used to determine when to switch from top-
down to bottom-up BFS based on the ratio of hub vertices in
the frontier queue.

III. EVALUATION AND ANALYSIS

All experiments were conducted on a Linux workstation
with 2 3.50 GHz Intel 8-core E5-2630 v3 Xeon CPUs, and
a NVIDIA GTX 1070 GPU with 8 GB device memory. The
operating system was Ubuntu 16.04 with CUDA 8.0 and GCC
v4.9 installed. Gunrock and Enterprise were compiled with
the default setting of their source code. We use NVIDIA’s
command-line tool nvprof to collect hardware metrics and
events that are necessary to analyze performance differences.
Because our goal is to analyze and understand the differences
of generalized and specialized GPU implementations, we only
consider on-device performance results and ignore data transfer
times.

Table I summarizes the datasets used for benchmarking,
which contain different types of graphs. For example, real-
world road networks such as roadNet-CA, road_usa, and
europe_osm have an average out-degree below 3; social
networks (names with prefix ’soc’) commonly exhibit scale-free
degree distributions and small diameters (thus small depths).
One kronecker dataset is included, and it is similar to social
networks with a small traversal depth. The dataset also include
movie actor network (hollywood_2009), web graphs collected
by crawler (uk-2002) and from Google (web-Google). Overall,
our datasets cover a wide range of topologies that can help
characterize the performance different between Gunrock and



TABLE I: Graph datasets used in our evaluations. Avg. Degree
indicates the average vertex degree for all vertices, and depth is
the average traversal depth randomly sampled.

Dataset Vertices Edges Avg. Degree Depth

roadNet-CA 1.97M 5.53M 2.81 676
road_usa 23.9M 57.7M 2.41 5430
europe_osm 51.0M 108M 2.12 21462
hollywood_2009 1.14M 113M 98.9 9
soc-LiveJournal1 4.85M 85.7M 17.7 14
soc-orkut 3.00M 213M 71.0 8
soc-twitter2010 21.3M 530M 24.9 16
uk-2002 18.5M 292M 15.8 27
web-Google 0.92M 5.1M 5.54 17
kron_g500-logn21 2.10M 181M 86.8 6

TABLE II: Overall performance comparison, illustrating the through-
put in millions of traversed edges per second (MTEPS).

Dataset Enterprise (Million) Gunrock (Million)

roadNet-CA 69 56
road_usa 142 63
europe_osm 50 36
hollywood_2009 17272 5912
soc-LiveJournal1 4457 1360
soc-orkut 8162 3333
soc-twitter2010 3125 1587
uk-2002 4011 6568
web-Google 1134 619
kron_g500-logn21 24156 1254

Enterprise. The datasets are from the University of Florida
Sparse Matrix Collection [4].

In the following, we first evaluate the overall performance
of the two systems, and analyze the impact of graph topologies
on the performance of BFS traversal with the commonly
used metric throughput (measured in millions of traversed
edges per second (MTEPS)) and GPU hardware-level metrics
to understand the underlying reasons. Except for overall
performance, we further investigate three important factors that
are crucial design choices when building high-performance
GPU-based graph processing. The first is workload distribution
that is crucial to balance load among GPU cores and dependent
on data layout of graphs. Second, both graph frameworks
and hardwired implementations rely on explicit or implicit
synchronization to arrange data or distribute work among
different steps. The third factor is memory access pattern that
is important for efficient utilization of the global and shared
memory.

A. Overall Performance

Table II shows the throughput in millions of traversed edges
per second (MTEPS) for all datasets. Several observations can
be made in Table II. First, specialized BFS engine (Enterprise)
is faster than generalized system (Gunrock) across all datasets
except for uk-2002. The speedup peaks at 19x for kron_g500-
logn21. For dataset uk-2002, Gunrock is 1.6x faster than
Enterprise. The speedup ratio between Enterprise and Gunrock
is less than 3x for other workloads. Second, the topology of
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Fig. 1: Throughput comparison of graphs with different average
degrees.
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Fig. 2: Throughput on scale-free graphs with the same number of
vertices and edges and different skewness.

input graphs has a significant impact on the overall performance.
Scale-free graphs achieve much higher traversal rates than road
networks by several orders of magnitude for both Enterprise and
Gunrock. For example, under the workloads hollywood_2009
and kron_g500-logn21, the throughput of both systems is
345x/164x and 483x/35x better than that of the workload
europe_osm respectively. Both Enterprise and Gunrock perform
poorly on road networks, and the performance is close to each
other. BFS is traversal-based, and there is only a subset of
vertices or edges active in the frontier at any given time. So
smaller frontiers means less parallelism, and the GPU can not
reach it maximum throughput. Third, from Table I and Table II,
we can also infer the performance impact of the average
degree. Road networks have much smaller average degrees as
compared to hollywood_2009 and kron_g500-logn21, which
can directly explain the performance gap between these two
types of workloads. More work per vertex indicates higher
throughput, because this can keep the GPU fully occupied.

Besides the datasets in Table I, we conduct experiments to
show the impact of the average degree on BFS performance
using a set of synthetic scale-free graphs (with R-MAT [1]) that
have the same number of vertices (10 millions) but differs in
average neighbors (edges vary from 10 millions to 80 millions).
As shown in Figure 1, both systems achieve higher throughput
with increasing average degrees, but Enterprise climbs up much
faster than Gunrock when the average degree becomes larger.
For low average degrees, Gunrock outperforms Enterprise.
Thus, combined with the above analysis, we can know that
larger average degree is necessary to obtain higher performance.

In addition, the skewness of vertex distribution in scale-
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Fig. 3: Comparison of instructions per cycle (IPC) between Enterprise
and Gunrock.

free graphs may also have implications for performance. Here,
we further investigate the performance variance caused by
skewness, by using GTgraph [1] to generate graphs with
different behaviors from typical social graphs. We set the ratio
of the parameters a, b, and c (choosing b = c for symmetry)
to 8 (highly-skewed scale-free graph), 3 (closest to many real-
world scenarios), and 1 (Erdos-Renyi model). The synthesized
graphs have the same number of vertices and edges (10 millions
vertices and 60 millions edges) but different skewness. Figure 2
shows the results. We can see that both Enterprise and Gunrock
performs better with the highly-skewed workload because
highly-skewed graphs have smaller traversal depths, although
for the workloads Erdos-Renyi and real-Scenario, the difference
is marginal. Enterprise still outperforms Gunrock under the
three workloads.

In the following, we investigate the architectural metrics that
characterize the observed differences in overall performance.
Collecting low-level metrics needs to use nvprof to instrument
GPU kernels, which incurs very high runtime overhead, and for
road graphs, the applications often ran for more than a week
until completion. So, we only present the results of roadNet-
CA. As significant differences in IPC (instructions per cycle)
could be indicative of correlated performance differences, we
choose the metric executed_ipc for our analysis. Executed IPC
is the average number of instructions executed (guaranteed
to retire) per active cycle. An SM is considered active if at
least one warp is allocated on the SM. As shown in Figure 3,
the IPCs of Enterprise are much higher than that of Gunrock
except for two exceptions. One is for dataset uk-2002, under
which we obtain better performance with Gunrock as illustrated
in Table II. The other exception is for the case of hollywood-
2009, where Enterprise outperforms Gunrock but has a lower
IPC. This is because IPC is not always directly connected to
performance, cycles will also be influenced by a wide range
of reasons that cause stalls, which we will discuss next.

Warp can be stalled for many reasons including instruction
fetch (the next instruction is not yet available), execution
dependency (the next instruction is waiting for one or more
of its inputs to be computed by earlier instructions), memory
dependency (the next instruction is waiting for a previous
memory accesses to complete), memory throttle (a large number

of outstanding memory requests prevents forward progress),
texture (the texture sub-system is fully utilized or has too many
outstanding requests), sync (the warp is waiting for all threads
to synchronize after a barrier instruction), constant memory
dependency (the warp is stalled on a miss in the cache for
__constant__ memory), pipe busy (the warp is stalled because
the functional unit is busy), not selected (the warp was ready
but did not get a chance to issue as some other warp was
selected for issue), and other (the warp is blocked for an
uncommon reason like compiler or hardware reasons).

Table III, Table IV, Table V, and Table VI show the
breakdown of stall reasons. Due to space constraints, we only
present the results of two representative graphs hollywood_2009
and roadNet-CA, and other workloads exhibit similar behaviors.
The first column represents the names of running kernels
(abbreviation), and the percentage numbers in the parentheses
are the ratio of kernel runtime to total execution time. We only
include kernels that contribute the most to the running time (3
for Enterprise, 2 or 3 for Gunrock).

From the four tables, we can make the following observations.
First, the kernels that consume the most of execution time are
not the same for different workloads. For example, there is
no overlap between the 3 kernels in Table III and Table IV.
Table V and Table VI share one kernel ’CULL’, but the top
time-consuming kernel is not the same. This phenomenon
implies that focusing on the kernels that are invoked under one
kind of workload may veil the facts that different workloads
demand different optimizations. Second, for hoolywood_2009
and other similar graphs in our datasets, the execution time
is relatively evenly distributed to different kernels in Enter-
prise, while only one kernel dominates in Gunrock. This has
important implication for performance, because one underlying
factor may render the dominant kernel the bottleneck. Road
networks that display poor performance in Table II behave
similarly (comparing Table IV and Table VI), considering
the runtime distribution. Third, stalls such as texture, pipe,
throttle, not_selected have pretty low values, which means that
both systems do not use specific resources such as texture
memory on one hand, and do not saturate certain hardware
components such as the functional unit (pipe) and issue a
large number of outstanding memory requests (throttle) on the
other hand. Forth, memory dependency (column memory) is
the main contributor to stalls. However, other stalls should also
be considered when reasoning the performance differences. For
example, the values of memory dependency in Table III are
larger than that in Table V, but the overall performance can
not reflect this. Instead, other stalls such as sync and inst_fetch
may also be major factors that influence performance. For the
same system, stalls are not always identical. For example, the
stalls inst_fetch and sync in Enterprise are more significant for
roadNet-CA as compared to hollywood_2009. In summary, we
speculate that single dominant kernel combined with multiple
non-trivial stalls could explain the performance downside of
Gunrock.



TABLE III: Breakdown of stalls for workload hollywood_2009 in Enterprise.

KERNELS (%) inst_fetch exec memory texture sync other constant pipe throttle not_selected

WAP (22%) 6.52% 7.47% 73.39% 0.01% 3.78% 5.55% 1.92% 0.50% 0.00% 0.85%
THD (15%) 3.22% 10.09% 80.02% 0.21% 1.70% 3.44% 0.63% 0.28% 0.01% 0.41%

SORT1 (14%) 0.27% 56.48% 31.54% 0.15% 0.00% 10.29% 0.05% 0.01% 1.20% 0.01%

TABLE IV: Breakdown of stalls for workload roadNet-CA in Enterprise.

KERNELS (%) inst_fetch exec memory texture sync other constant pipe throttle not_selected

SORT2 (49%) 2.82% 3.56% 88.74% 0.00% 2.90% 1.40% 0.40% 0.04% 0.00% 0.13%
PRE (14%) 14.69% 22.40% 19.78% 0.00% 29.25% 6.25% 5.40% 0.83% 0.11% 1.28%
POST (10%) 11.62% 14.41% 42.09% 0.00% 19.48% 4.16% 6.82% 0.51% 0.16% 0.75%

TABLE V: Breakdown of stalls for workload hollywood_2009 in Gunrock.

KERNELS (%) inst_fetch exec memory texture sync other constant pipe throttle not_selected

RELAX (80%) 1.83% 13.44% 66.89% 0.00% 12.77% 3.98% 0.14% 0.37% 0.01% 0.58%
CULL (18%) 23.21% 7.12% 16.98% 0.00% 36.07% 8.76% 7.15% 0.32% 0.02% 0.36%

TABLE VI: Breakdown of stalls for workload roadNet-CA in Gunrock.

KERNELS (%) inst_fetch exec memory texture sync other constant pipe throttle not_selected

FORWARD (50%) 25.36% 12.07% 40.37% 0.00% 12.65% 4.96% 4.50% 0.10% 0.00% 0.00%
CULL (16%) 33.54% 9.03% 3.51% 0.00% 33.08% 12.43% 7.05% 0.63% 0.05% 0.67%
COUNT (9%) 17.13% 9.42% 49.73% 0.00% 0.00% 1.54% 21.16% 0.32% 0.60% 0.10%

B. Load Balancing

It is very challenging to write efficient GPU programs for
graph processing due to the inherent irregularity of graph
structures. Due to large variance of vertex degrees, this
irregularity would cause imbalanced workload distribution,
which severely limits the utilization of GPU resources. Existing
generalized or specialized graph engines put a lot of efforts in
designing efficient data organization and workload-to-thread
mapping strategies to alleviate this problem. For example,
Enterprise introduces an approach of classifying frontiers based
on out-degrees and assigning GPU threads dynamically at
runtime. Gunrock proposed a set of methods to deal with load
imbalance, such as static workload mapping strategy, dynamic
grouping workload mapping strategy, and merge-based load-
balanced partitioning workload mapping strategy.

For graph processing systems, imbalanced workload distri-
bution among threads would result in warp divergence, which
should be avoided in order to achieve ideal performance. Warp
execution efficiency (WEE) is a low-level metric defining the
ratio of the average active threads per warp to the maximum
number of threads per warp supported on a multiprocessor. It
can be used to describe how evenly a system allocate its load
to GPU threads. Table VII and Table VIII show the average
WEE of Enterprise and Gunrock for all the kernels invoked
during execution (the dash line in Table VIII indicates the
absence of kernel invocation). As aforementioned, only the
results of two datasets are presented due to space limits. In
addition, the percentage of time consumption for each kernel
is also include in the tables (the Time column).

From the tables, we can know that both systems achieve

TABLE VII: Warp execution efficiency of Enterprise.

hollywood_2009 roadNet-CA
KERNELS Time WEE Time WEE

WAP 22.1% 97.62% 0.1% 100.00%
THD 14.7% 63.70% 0.7% 86.80%
SORT1 13.8% 70.78% 3.0% 93.78%
REAPER 10.3% 92.17% 6.5% 86.32%
SORT2 6.9% 93.65% 49.5% 98.23%
SORT3 9.6% 95.35% 0.6% 93.17%
CTA1 6.5% 99.09% 4.5% 100.00%
PRE 5.2% 84.49% 13.6% 84.49%
WAPE 4.6% 98.04% 5.0% 100.00%
POST 3.2% 88.75% 10.1% 88.75%
CTA2 2.1% 99.98% 0.1% 100.00%
THDE 0.9% 98.52% 6.5% 98.41%

TABLE VIII: Warp execution efficiency of Gunrock.

hollywood_2009 roadNet-CA
KERNELS Time WEE Time WEE

RELAX 79.9% 99.13% – –
CULL 17.8% 82.76% 15.9% 83.70%
COUNTS 0.84% 94.67% 9.0% 97.07%
MAD 0.46% 100.00% 1.3% 100.00%
DOWNSWEEP 0.23% 100.00% 5.1% 99.98%
LIGHT 0.23% 94.31% – –
REDUCE 0.23% 97.30% 4.2% 97.47%
FORWARD – – 50.3% 82.10%
ACCUM – – 5.9% 3.12%
SCAN 0.0% 99.79% 6.1% 96.38%



TABLE IX: Comparison of BSP barrier count and kernel invocation
count.

BSP Barriers Kernel Invocations
Dataset Enterprise Gunrock Enterprise Gunrock

roadNet-CA 258 676 3366 3682
road_usa 258 5430 3369 39633
europe_osm 583 21462 7591 121790
hollywood_2009 9 9 134 61
soc-LiveJournal1 13 15 190 103
soc-orkut 8 41 116 169
soc-twitter2010 16 16 229 113
uk-2002 27 43 372 301
web-Google 17 40 232 197
kron_g500-logn21 6 6 90 44

very high warp execution efficiency because of the specifically
designed optimizations. In Enterprise, the top time-consuming
kernels for the two workloads (WAP and SORT2) achieves
very high WEE. As for Gunrock, the WEE of the top kernel
RELAX for hollywood_2009 is relatively higher than its
counterpart for roadNet-CA (kernel FORWARD). Note that
higher WEE does not necessarily indicate higher performance.
For example, for workload hollywood_2009, the overall WEE
of Enterprise is smaller than that of Gunrock (90% vs 96%),
but the performance of the former is 3x better than the latter.
The same situation can be observed between the two workloads
in Enterprise. Thus, WEE should not be used for performance
analysis individually, and more active threads do not directly
lead to higher performance, because threads might be stalled for
a variety of reasons and frequent context switching consumes
processor time without getting real work done.

C. Synchronization

Graph applications require frequent synchronization. There
are four types of synchronization that we will discuss in the
following. First, in BSP model, a barrier is needed at the end
of each super-step to make sure that all conditions are met
before starting the next super-step. Second, within each super-
step, GPU kernel invocations are alway necessary to perform
implicit global synchronizations. Third, atomic instructions are
generally adopted in graph primitives to manipulate irregular
graph data structures. Forth, inter-thread communications within
a warp (warp vote and shuffle) provide warp-synchronous
programming style. Warp vote instructions such as __all,
__any, __ballot are like predicated __syncthreads_or, and
instructions except that results are only aggregated across a
warp. Warp shuffle instructions are intrinsic functions that
allow threads to directly access another threadâĂŹs registers.
Statistics about warp vote and shuffle can be collected using
the metric inst_inter_thread_communication.

Table IX summarizes the BSP barrier count (proportional to
the iterations required for an operation to converge) and kernel
invocation count. Barrier count shows positive correlation with
performance for most graphs. However, for road networks,
the significant differences of barrier count do not translate to
performance boost. From kernel invocation count, we can not
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Fig. 4: Kernel invocation and PCI data transfer count.
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Fig. 5: Total kernel execution time and PCI data transfer time.

see such correlation. Enterprise achieves higher performance
than Gunrock even it incurs more kernel invocations. Thus,
although it is a common practice to reduce kernel invocations
when building programmable generalized graph frameworks, it
may not be the case for specialized graph processing systems.
Table X shows the global memory atomic transactions. Relying
on a specially-designed frontier queue generation method,
Enterprise is able to not only eliminate the need of thread
synchronization (via atomic instructions), but also remove
duplicated frontiers from the queue that avoids potentially
useless work down the road. We attribute this as a major
performance improvement compared to Gunrock which incurs
millions or more atomic operations across all datasets except
for road networks. Finally, from Table XI we can infer that
inter-thread communications exhibit no negative correlation
with performance, as Enterprise invokes much more inter-thread
communication instructions than Gunrock. The vote instruction
evaluates a condition and broadcasts the result to all threads in
the warp. The shuffle instruction enables data exchange between
threads within a warp without staging the data through shared
memory. By performing the exchange without both a read and
a write, it can reduce shared memory usage.

D. Memory Subsystem

A negative side-effect of GPU-based applications is that CPU
and GPU need to communicate frequently via PCI interface,
which incurs high overhead. Our aforementioned analysis
ignores the PCI data transfer overhead, considering only the
kernel execution time. Here, we study the PCI data transfer



TABLE X: Global memory atomic transactions.

roadNet-CA hollywood_2009 soc-LiveJournal1 soc-orkut soc-twitter2010 uk-2002 web-Google kron_g500-logn21

Enterprise 0 0 0 0 0 0 0 0
Gunrock 0.004M 7.7M 5.6M 2.3M 34M 2.6M 0.07M 28M

TABLE XI: Number of inter-thread communication instructions executed by non-predicated threads.

roadNet-CA hollywood_2009 soc-LiveJournal1 soc-orkut soc-twitter2010 uk-2002 web-Google kron_g500-logn21

Enterprise 0 10M 10M 30M 9.3M 47M 0.54M 5.4M
Gunrock 0.01M 0.28M 0.6M 0.12M 2.2M 0.63M 0.06M 0.53M
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Fig. 6: Memory usage comparison.

patterns. Figure 4 compares the kernel invocation counts and
cudaMemcpy function calls (PCI) that is used to transfer data
between CPU and GPU. The results of road networks are not
shown because the values are too large to fit in the same figure.
One interesting phenomenon is that Enterprise interacts with
CPU up to 9x more frequently than Gunrock, and the kernel
invocations in Gunrock is nearly 2x more than the cudaMemcpy
calls. This pattern normally implies higher performance, but the
results in Table II show the opposite. We can explain this by
examining the total kernel execution time and data transfer time
as shown in Figure 5. In most cases, the total data transfer time
in Enterprise is on par with Gunrock. In particular, for dataset
twitter2010, although the number of calls to cudaMemcpy is
small in Gunrock, the total transfer time is enormous. Our
analysis indicate Enterprise’s fine-grained data management is
effective.

Both Enterprise and Gunrock use the Compressed Sparse
Row (CSR) format to store graphs. The design choice of
different CSR-based graph structures not only tightly correlates
to efficient memory access that impacts performance, but
also determines memory consumption. Figure 6 compares the
memory usage. Enterprise is more memory efficient for most
datasets except for roadNet-CA and web-Google, whose mem-
ory consumption is small. For the two largest datasets europe-
osm and twitter2010, Gunrock allocates 3x and 2.5x more
memory respectively. Besides memory usage, memory access
throughput is an important indicator for overall performance.
We use global memory load throughput (graph processing
is read dominant) as the metric to perform comparison. The
global memory throughput is the amount of data requested by

instructions from the global address space, and it considers both
L1 cache hits and all accesses to L2 cache. Table XII presents
the results, which illustrates that higher memory throughput
has a positive correlation with achieved performance. One
outlier is the result from Enterprise under dataset roadNet-
CA. Understanding the reason would require an in-depth
investigation of Enterprise’s implementation, and we leave
this for future work.

IV. DISCUSSION

Based on the above analysis, we summarize several important
observations. First, although specialized system loses the
flexibility of generalization, the specifically-designed optimiza-
tions may also be applicable to similar systems. Enterprise’s
strategies such as how to avoid atomic operations would be
of great significance to Gunrock, given that both systems are
based on the same concept of frontier. Second, understanding
real performance bottlenecks requires a horizontal view of
multiple factors instead of concentrating on a single metric.
Some metrics are not directly connected to performance, such
as the warp execution efficiency discussed in this paper. Third,
different workloads may stress different components, and an
insignificant kernel may dominant the execution when workload
changes. Therefore, non-critical parts in an application also
deserve attentions. Forth, counterintuitive patterns discovered
during execution are not necessarily an indication of degrading
performance, such as the kernel invocation count. Last but not
least, current systems behave poorly for road networks, and
new approaches are desired in future research.

V. RELATED WORK

GPU based graph processing frameworks. Medusa [14]
is an efficient implementation of the Pregel model for GPUs.
Medusa provides a more fine-grained programming interface,
exposing data parallelism on edges, vertices, and messages
called EMV model. Even with the fine-grained interface,
Medusa introduces load imbalance and non-coalesced memory
access among threads on the GPU, which leads to underutiliza-
tion of GPU computing resources. Furthermore, the EMV
model is still complicated with too many details exposed
to developers compared to the original vertex-centric model.
In this paper, we present an Edge-Vertex model and two
optimizations to address these issues. CuSha [2] is a graph
processing framework, proposing new graph representations



TABLE XII: Global memory throughput.

roadNet-CA hollywood_2009 soc-LiveJournal1 soc-orkut soc-twitter2010 uk-2002 web-Google kron_g500-logn21

Enterprise 102.3GB/s 145.2GB/s 87.8GB/s 82.7GB/s 72.9GB/s 110.9GB/s 77.2GB/s 86.9GB/s
Gunrock 26.4GB/s 74.9GB/s 73.1GB/s 74.4GB/s 60.7GB/s 82.2GB/s 65.8GB/s 70.9GB/s

such as G-Shards and Concatenated Windows to minimize
non-coalesced memory accesses and achieve higher GPU
utilization for processing sparse graphs. However, the new
graph representation in CuSha incurs larger memory space
overhead than the conventional CSR representation. TOTEM [5]
is a graph processing engine for heterogeneous many-core
systems, which reduces development complexity and applies
algorithm-agnostic optimizations to improve performance.

Gunrock [11] is a high-performance graph processing
library targeting the GPU. Gunrock implements a data-centric
abstraction, and strikes a balance between performance and
expressiveness by coupling GPU computing primitives and
optimization strategies with a high-level programming model.
GraphReduce [10] is a scalable GPU-based framework that
operates on graphs that exceed the GPU’s memory capacity.
GraphReduce adopts a combination of edge- and vertex-centric
implementations and uses multiple GPU streams to exploit
the high degree of parallelism of GPUs. Enterprise [6] is a
new GPU-based BFS system that combines three techniques
to remove potential performance bottlenecks: streamlined GPU
threads scheduling, GPU workload balancing, and GPU based
BFS direction optimization. The GPU workload balancing that
classifies nodes based on different out-degrees is similar to
our sorting-based load-balancing strategy, but using a different
approach. GraphBIG [9] is a comprehensive benchmark suites
for graph computing, which supports a wide selection of
workloads for both CPU and GPU, and covers a broad scope
of graph computing applications.

Characterization study on GPU-based graph processing.
In [13], the authors used cycle accurate GPU simulator to
analyze the impact of warp scheduler, performance bottlenecks
and load imbalance across SMs, CTAs and warps for 12
specialized graph applications. [12] performs a comparison be-
tween 3 graph processing frameworks from several dimensions
including efficient building block operators, synchronization,
workload distribution, and data movement. Our work is different
in that we focus on the characterization of a specific graph
algorithm BFS to present a detailed analysis for generalization
and specialization.

VI. CONCLUSIONS

In this paper, we present a characterization study of BFS
on two GPU-based graph processing systems, which are
representative state-of-the-art solutions in generalization and
specialization. Our evaluation reveals some findings that have
not been covered in related works, which we believe provides
insights in how these systems run and how to improve existing
both generalized and specialized systems.
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