
Hybrid CPU/GPU Checkpoint for GPU-Based

Heterogeneous Systems

Lin Shi1,2, Hao Chen2, and Ting Li1

1 School of Computer Science and Enginerring,
Hunan University of Science and Technology, Xiang Tan, China

2 School of Computer and Communication,
Hunan University, Chang Sha, China

Abstract. Fault tolerance has become a major concern in exascale com-
puting, especially for the large scale CPU/GPU heterogeneous clusters.
The performance/cost benefit of GPU based system is subject to their
abilities to provide high reliability, availability, and serviceability. The
traditional CPU-based checkpoint technologies have been deployed on
the GPU platform but all of them treat the GPU as a second class
controllable and shared entity. As existing GPU checkpoint/restart im-
plementations do not support checkpointing the internal GPU status,
the codes running on GPU (kernel) can not be checked/restored just like
the CPU codes, all the checkpoint operation is done outside the kernel.
In this paper, we propose a hybrid checkpoint technology, HKC (Hybrid
Kernel Checkpoint). HKC combines the PTX stub inject technology and
dynamic library hijack mechanism, to save/store the internal state of a
GPU kernel. Our evaluation shows that HKC increases the system re-
liability of CPU/GPU hybrid system with a very reasonable cost, and
show more resilience than other checkpoint scheme.

Keywords: checkpoint, GPU, CUDA, kernel.

1 Introduction

Over the past few years, the modern 3D graphics processing unit (GPU) has
evolved from a fixed-function graphics pipeline to a programmable parallel pro-
cessor with computing power exceeding that of multicore CPUs. Under the
GPGPU concept, NVIDIA has developed a C language based programming
model, Compute Unified Device Architecture (CUDA) [1], which provides greater
programmability for high-performance graphics devices. GPU programming has
been successfully exploited in recent years for resolving a broad range of com-
putationally demanding and complex problems.

For the high performance computing (HPC), the exponential growth of GPU
supercomputers in the Top500 list has prove the efficiency of large GPU clusters.
Since 2000, a large number of large-scale GPU-based clusters merged as the
fasted supercomputer in the world. For example, the first (Tianhe-1A), the third
(Nebula), and the fourth (Tsubame2.0) fastest supercomputer in the top 500 list
of November 2010 are all CPU/GPU heterogeneous systems.

K. Li et al. (Eds.): ParCFD 2013, CCIS 405, pp. 470–481, 2014.
c© Springer-Verlag Berlin Heidelberg 2014

Hybrid CPU/GPU Checkpoint for GPU-Based Heterogeneous Systems 471

Although the GPGPU paradigm successfully provides significant computation
throughput, the reliability of GPUs in error-intolerant applications is largely
unproven. Traditionally the 100% accuracy is not necessary for GPU because
the errors only affect a few pixels or a few frames and where performance is
more important than accuracy. However, an error in a GPGPU application will
crash down the whole program or produce an incorrect result. Since the purpose
of GPGPU is to perform massive amounts of computation, the failure of a GPU
could result in significant loss of application progress. The Fermi and Kepler
GPUs of Nvidia already support the ECC (Error Correcting Code) in graphic
memory to provide some kinds of fault tolerance, but the GPU is still vulnerable
to control logic errors and multi-bit errors in memory. A test in the Tokyo
Institute of Technology observed eight errors in a 72-hour run of a GPGPU
testing program on 60 NVIDIA GeForce 8800GTS 512 [2]. Stanford University
find that the two-thirds of tested GPUs on Folding@home exhibit a detectable,
pattern-sensitive rate of soft error [3] .

The NVIDIA developed a new compute mode SIMT (single-instruction,
multiple-thread) based on the SIMD (single-instruction, multiple-data). The fea-
ture of SIMT lead us to develop the HKC (Hybrid Kernel Checkpoint), a novel
state store/recovery method for GPU code. HKC support to check a running
kernel at any time, at any place, and recover from errors detected in a code
region by partially recomputing the region. Meanwhile HKC is totally transpar-
ent to the programmer, no source code modification is needed to perform the
checkpoint.

To the best of our knowledge, HKC is the first work on how to check/restore
the kernel level state in a transparent way.

In summary, the main contributions of our work are:

– We introduce HKC, a hybrid-kernel-checkpoint method to recover from
some given GPGPU faults efficiently by exploiting the SIMT characteris-
tics of programs running on GPGPUs. HKC overcome some serious short-
coming of traditional method: the inefficiency from the full re-computation,
the lack of flexibility in check interval and the intrusiveness arise from some
compiler-aid method.

– We give a detail search on the key features of SIMT architecture and show
the possible to checkpoint this new architecture in a transparent way.

– We describe an implementation of our framework on the CUDA platform for
NVIDIA GPGPUs.

– We carry out detailed performance evaluation on the overhead of our frame-
work. This evaluation shows that the HKC framework is practical and can
deliver high performance for checking/restoring GPGPU applications in the
CPU/GPU hybrid system.

While this work focuses on checkpoint on CPU/GPU heterogeneous systems,
HKC is also applicable to any distributed systems equipped with the SIMT-style
processors.

The rest of the paper is organized as follows: In Section 2, we provide
some necessary background about this work. Section 3 discusses the design and

472 L. Shi, H. Chen, and T. Li

implementation of HKC respectively. Next we evaluate HKC in Section 4 . In Sec-
tion 6, we discuss related work. Finally, in Section 7 we present our conclusions.

2 Backgroud

2.1 CUDA

In 2007 NVIDIA propose the CUDA (Compute Unified Device Architecture)
framework. CUDA is the first dedicate GPGPU interface on the GPU platform,
which provide a C-like semantics to write the parallel code (kernel), and give pro-
grammer the ability to direct control the GPU. In recent years a large number of
compute-intensive applications have been ported to CUDA platform, the power
of CUDA and GPU has been proved in many cases. The device code running on
the GPU is usually called a KERNEL according to the CUDA’s terminology.

Runtime and Driver API of CUDA. There are two different kinds of CUDA
API exist in the CUDA software stack. The low-level API system is called the
CUDA driver API, the high-level, runtime API. The runtime API is easier to use,
but the driver API gives programmer more control over low level details. They
both provide the interface to allocate/withdraw the graphic memory objects,
and launch the kernel.

3 Design and Implementation

The checkpoint-based GPU fault-tolerant technology will periodically save the
current execution state of the GPU, and roll back the GPU state to a certain
checkpoint when a failure happened. It comprise two phases: checking phase and
restore phase.

Checking Phase. During the normal execution of GPU application, triggered
by the user or system, the current GPU state is copied and stored in the persis-
tent media, which is called a checkpoint file.

Restore Phase. When a fault occurs or application get unexpected results, the
GPU rollback to a previous checkpoint, then continue to run from this state.

The key issue of checkpoint technology is how to define, check and restore the
application state. The checkpoint image should be the complete unity combining
the internal and external state of a program which support the its successful ex-
ecution in the future. Typical states for Linux and Windows applications include
registers, heap, stack, thread, address space, and signal, lock, file, socket, han-
dler, I/O device, external connections etc. Relative to the applications running
on the CPU, the internal state of code running on the GPU (Kernel) exhibit some
different characters. The kernel state lies in the GPU and device memory against
CPU and host memory, the address space of kernel is organized by the CUDA
runtime against the operating system. Further, Kernel state can be divided into
in-kernel state and out-of-kernel states, depending on the life cycle of objects.

Hybrid CPU/GPU Checkpoint for GPU-Based Heterogeneous Systems 473

For example, the global memory belongs to the out-of-kernel states because the
object in global memory will persist during different kernel’s execution unless an
explicit API is called to delete them. The on-chip resource (register file,control
unit,local memory, share memory) are in-kernel state because they are valid only
when a kernel is running. A CUDA application may involve many kernels, each
one of them involves different internal state when they are executing on the SMs.

In short, the out-of-kernel state is relatively simple, while the in-kernel state
is more complex. In order to reduce the complexity of the GPU checkpoint, the
existing CPU/GPU hybrid checkpoint mechanism [17, 23–26] focus only the sim-
plified out-of-kernel state. Figure 1 shows the flow chart of OKC: When the CPU
receives the checkpoint signal it does not immediately perform a checkpoint, but
to determine the current state of the GPU. If there is no any running kernel and
pending kernel in the queue, the checkpoint is performed. Otherwise OKC will
wait until running or pending kernels all finished. If an error happened in the
the kernel execution, the entire system is rolled back to the previous checkpoint.

As can be seen with reference to Figure 1 , OKC achieve both concision and
effectiveness by keeping the check/restore mechanism out of the kernel. But there
are many shortcomings with OKC as follows:

CPU
restore CPU

restore GPU state

continue
GPU

arrival of check signal

kernel

save GPU state

arrival of restore signal

continue

check CPU

WAIT

kernel

crash

checkpoint 1

Fig. 1. The control flow of OKC

Non Real-Time Processing in Check Stage. OKC must wait until the
kernel completed means there exists a delay between the arrival of check signal
and actual check operation. The delay time depend the total execution time
of running and pending kernels. For long-running kernel the check operation is
postponed in a great extend. This has a negative impact on application require
strong real time capacity. Whats more, in the GPU cluster, a large number of
GPUs must be synchronized to the keep the consistency of global checkpoint.
If some of them are running heavy kernel the overall OKC check time will be
extended even lead to domino effect (A distributed system can not find the
global consistent checkpoint, all task roll back to the initial state and lost all the
effective computation).

474 L. Shi, H. Chen, and T. Li

Unbalance Interval Time of Check. Checkpoint technology needs to balance
the relationship between the fault tolerance capability and inspection overhead.
Only when the check event is distributed evenly during the execution of GPGPU
applications, can the checkpoint technology achieve optimal tradeoff balance
between performance and reliability. But the check interval of OKC is heavily
depend on the workload of kernel. For example, although the administrator
can set a reasonable check interval to one hour, the OKC has to stretched this
interval to threes hours because of a long-running kernel. Theoretically the longer
a KERNEL is running, the more frequently it should be checked since it is more
vulnerable to errors, which OKC can not do.

Time-Consuming in Recovery Phase. In recovery phase OKC should recom-
pute the entire kernel from the last checkpoint even only one transient fault is
detected on the GPU. Each kernel need be re-started from scratch and thousands
of threads in it are fully recalculated. The kernel represent the most intensive
computation in GPGPU applications, the cost of such full-fledged recomputing
may be unnecessarily high.

The shortcoming of OKC lead us to find a more flexile checkpoint mechanism.
In CUDA framework a kernel is decomposed into many CTAs, which run inde-
pendently from each other and occupy SMs in the forms of groups. The execute
order of these groups, the binding relationship of CTA to SMs are not guaranteed
by the CUDA framework. The programmer should not make any assumptions
or rely on the order of CTAs or coupling schemes between CTA and SM.

The above characteristics determines the correctness of the kernel depend
on the correctness of various CTA, regardless of the execution order between
the CTA or the coupling relationship between CTA and SM. Based on this
observation, we develop a partially check/restore mechanism which cares about
the CTA-level state in the kernel.

When a kernel is suspended, all CTAs must freezed in one of the follow-
ing three situation: finished (endCTA), on-the-fly (halfCTA), or unborn (be-
ginCTA).

endCTA contains the threads have ended their job, the calculation results are
reflected in the global memory

halfCTA: contains threads are running on the SMs. Notes in CUDA the threads
in the same CTA may execute different instructions.

beginCTA: the threads in it do not start yet.
So a sophisticated check/restore scheme should save the internal state for the

halfCTA and record which CTA is finished or unborn in the check phase. In
the restore phase, the check/restore scheme make is sure to never re-execute the
endCTA, and re-execute the halfCTA from the place it break and re-launch the
beginCTA from the beginning. In some case the kernel is reenterable so it is
ok to re-execute the endCTA but it is difficult to distinguish whether a kernel
is reentrant or not. For performance reasons, the restore operation should not
repeat the already completed calculation.

Hybrid CPU/GPU Checkpoint for GPU-Based Heterogeneous Systems 475

SM 1

SM 2

beginCTA endCTA
HalfCTA

checkpoint

Fig. 2. Three kinds of CTA in a suspended kernel

The above analysis tell us the the CTA running the same kernel code must
forked in the restore phase according to their execution state in the check phase.
The restore code with different branches should be injected to the kernel which
we called the HKC stub.

There are many ways to realize such a check/restore scheme, in our design of
HKC, we put three main factors in minds:

Transparency. HKC should not force the programmer do anything outside the
CUDA program model, which means, HKC need not any source code modi-
fication or introduce extra programming rules. In addition, we would like our
techniques to easily extend to other SIMT/SIMD architecture, allowing people to
use GPU checkpoint tools just like the traditional system-level CPU checkpoint
tools.

Performance. The main advantage of GPGPU computation is the high per-
formance, while the checkpoint is recognize as a high overhead fault tolerance
technology. HKC should minimize these overhead, combine the strengths of high
performance from CUDA and reliability from checkpoint.

Compatibility. We would like our HKC to easily combined to the already ex-
ist CPU-based checkpoint technology, to form a sophisticate CPU/GPU hybrid
checkpoint system.

4 Evaluation

While the previous sections have presented detailed technical descriptions of the
HKC, this section evaluates the efficiency of HKC using programs selected from
official SDK examples: a set of general-purpose algorithms from various research
area. The benchmarks range from simple data management to more complex
WalshTransform computation and MonteCarlo simulation. Table 1 shows the
statistical characteristics of these benchmarks, such as the quantity of API calls,

476 L. Shi, H. Chen, and T. Li

Table 1. Statistics of Benchmark Applications

Number of APIs GPU RAM Data Volume

AlignedTypes (AT) 1990 94.00MB 611.00MB

BinomialOptions (BO) 31 0.01MB 0.01MB

BlackScholes (BS) 5143 61.03MB 76.29MB

ConvolutionSeparable (CS) 48 108.00MB 72.00MB

FastWalshTransform (FWT) 144 128.00MB 128.00MB

MersenneTwister (MT) 24 91.56MB 91.56MB

MonteCarlo (MC) 53 187.13MB 0.00MB

ScanLargeArray (SLA) 6890 7.64MB 11.44MB

the device memory size they consume and the data volume transferred from or to
GPU device. As a comparison we re-implement the OKC mechanism developed
in the [13].

The following testbed has been used for all benchmarks: A HP Proliant
ML150G6 server equipped with one Intel E5504 processors with four cores and
provided with 8 GBytes of memory. Furthermore, the graphics hardware was
NVIDIA’s GTX470 with 1.2GBytes graphic memory. As for software, the test
machine ran the Fedora 13 Linux distribution with the 2.6.33.3 kernel, with the
official NVIDIA driver version 169.19.26 for Linux and CUDA toolkits
version 3.2.

1.
57 2.

86

2.
43

1.
71 2.

90 3.
41

13
.7
5

2.
60

1.
95 3.
01

2.
90

1.
89 3.

20 4.
35

17
.8
5

3.
72

2.
09 3.

25 3.
63

2.
41

4.
13 4.
71

18
.0
0

4.
23

0

2

4

6

8

10

12

14

16

18

20

w/o checkpoint

OKC

IKC

T
im

e

AT BO BS CS FWT MT MC SA

(a) Runtime Overhead

56
.5

0.
2

76
.7

10
8.
2

65
.7

92
.8

1.
0

54
.758
.5

0.
3

78
.7

11
0.
5

66
.8

96
.4

1.
2

56
.5

0

20

40

60

80

100

120

OKC IKC

AT BO BS CS FWT MT MC SA

(b) Check Overhead (Space)

0.
12

0.
12

0.
21

0.
27

0.
25

0.
30

0.
12

0.
21

0.
15

0.
13

0.
24

0.
32

0.
30 0.

32

0.
18

0.
33

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

OKC IKC

AT BO BS CS FWT MT MC SA

(c) Check Overhead (Time)

0.
28

0.
20

0.
31

0.
38

0.
29 0.
34

0.
19 0.

25

0.
69

0.
52

0.
65

0.
85

0.
65

0.
75

0.
35

0.
65

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9
OKC IKC

AT BO BS CS FWT MT MC SA

(d) Resume Overhead

Hybrid CPU/GPU Checkpoint for GPU-Based Heterogeneous Systems 477

4.1 Runtime Overhead

Even no check is performed, HKC mechanism will also introduce some overhead
which come from the monitoring operations on CUDA library and the stub
injection. Figure 3(a) depicts the execution time of each benchmark under three
different configuration: without any checkpoint mechanism, with HKC and with
OKC. As it shows, the maximum overhead of OKC is up to 42% (SA), minimum
of 5% (BO), an average of 21%. The runtime overhead of HKC is up to 62%
(SA), and average of 38%. The HKC runtime overhead is relatively high because
the HKC initialization involves the establishment of a memory pool and the
operation to inject the stub. OKC also need to keep track of the CUDA API,
but they do not need to adjust the KERNEL code so gained some performance
advantages. From another perspective, as the supplementation of OKC, HKC
only add maximum of 29%, an average of 14% of the overhead at the base of
OKC.

Although in eight samples the HKC runtime overhead can not be ignored,
partly arise from the facts they involves relative short running kernel. Taking
the constant initialization time into account, HKC is still practical to long-
running applications. If HKC provide some options to switch on/off itself, so as
to distinguish between critical and non-critical KERNEL, the runtime overhead
of HKC will be further reduced.

4.2 Checking Overhead

The checking overhead include the time and space overhead introduced by the
checkpoint operation. Figure 3(b) shows the average capacity of the checkpoint
file. Since the check in HKC happened when the kernel is running the internal
state is more complex then OKC, the space overhead of HKC is higher (9% on
average) than OKC, the degree depends on the numbers of halfCTA, numbers
of CTA and the usage of registers, shared memory. In the BO and MC test HKC
increase the check contents to a extent of 40% and 17%, the reason is their state
set are relatively smaller making the HKC overhead more obvious.

Time overhead from the checkpoint means the interval between the arrival
of the checkpoint signal and the finish of the checkpoint snapshot, as shown in
Figure 3(c). Relative to the space overhead, time overhead of the HKC achieve
an average of 16% and a maximum of 35%. This is due to the fact HKC need to
exploit the CUDA debugging API to obtain the internal state, each of this API
involves one or more system calls.

On the basis of both Figure 3(b) and Figure 3(c), it is easy to find a strong
positive relationship between space overhead and time overhead. This is because
most of time overhead of checking is the write operation on checkpoint file.

4.3 Restore Overhead

The recovery is the process to rebuild the CUDA state on a GPU. Figure 3(d)
measure the time for the recovery of each sample program. A main portion of

478 L. Shi, H. Chen, and T. Li

the recovery operation is the reconstruction of the GPU state, and thus the size
of the state set has direct impact on the recovery time. In addition to the factors
of states, the endCTA still occupy the dispatch unit and instruction unit, the
increase of endCTA also degrade the performance of HKC.

5 Discussion

The debug interface of CUDA is exploited in our HKC scheme which may cause
some side effect. For example, according to the official document, leave the debug
interface open will force the KERNEL running in synchronization mode. Some
debug API require the detailed debug information which can be found only
in the debug version of CUDA application. The requirement is unacceptable
for commodity software, not to mention debug version generally shows awesome
performance compared with the release version. We argued the debug interface is
not native designed for the check/restore operation, a more sophisticate interface
should be provided by the graphic vendor.

In this embodiment of HKC we choose to ignore the state in the halfCTA, it
is not only because its complexity but also the lack of method to write the PC
(Program Counter) in a warp. The CUDA debugger API provide the device state
inspection interface readPC and readVirtualPC, but no corresponding device
state alteration APIs.

6 Related Work

Checkpointing and rollback recovery (Checkpoint and Rollback Recovery) tech-
nology is commonly used in post-recovery techniques to fault-tolerant. Before
the advent of the GPU checkpoint technology has been widely used in the CPU-
based computing systems, such as CRAK [10] BLCR [11], ckpt [12]. Recent
years many research concentrate on the GPU-oriented checkpoint mechanism.

CheCUDA [13] is the first GPU checkpoint mechanisms based on the BLCR.
Since the BLCR itself does not support GPU device, CheCUDA had to remove
the GPU context before starting BLCR, and restore the GPU state after BLCR
finished.

As a first dedicate checkpoint for GPU, CheCUDA has some apparent draw-
back: Firstly the combination way with BLCR is not elegant enough because
the context of GPU must be destroyed and rebuilt out of the BLCR. Secondly
only two simplest SDK examples involves 20 CUDA APIs out of total 60 offi-
cial APIs can not prove the effective of CheCUDA. The last but not less im-
portant, the performance of CheCUDA is not good enough, it cost more than
ten times the normal execution in checking phase. NVCR [15] strengthen the
CheCUDA in transparency and adaptability. The authors of CheCUDA put their
idea on another GPGPU framwork: OPENCL [20] to form a new checkpoint
scheme CheCL [14]. VCCP project [18] discussed the GPU checkpoint mecha-
nism in theory and analyse its optimized CUDA asynchronous mechanism. The

Hybrid CPU/GPU Checkpoint for GPU-Based Heterogeneous Systems 479

biggest problem is VCCP do not implement its mechanism at all (no implemen-
tation), the theoretical design can not be verified in practice. Tokyo Institute of
Technology has some important progress in the distributed GPU cluster check-
point technology. Based on the CPU/GPU hybrid Tsubame2.0 supercomputer,
in [19]they integrated the BLCR, OpenMPI and GPU checkpoint mechanism,
extended the single-node GPU checkpoint technology to multi-GPU field. [17]
is the further improvement of distribute GPU checkpoint, the authors take a va-
riety of techniques to optimize the initial design. First, it completely abandoned
BLCR, put the checkpointing base on the Reed-Solomon encoding. Second, it
dug the compute potential of idle nodes to accelerate the check operation. The
third it make full use of the asynchronous mode of CUDA and diskless storage.
It is worth noting that although the project shows impressive high efficiency, its
GPU checkpoint program is still based on the interception and encapsulation of
cudaMemCpy function, the check events occurred outside of the KERNEL, thus
it still belongs a outside-kernel-checkpoint category.

7 Conclusion

In this paper we proposed HKC, an inside-kernel-checkpoint mechanism for
CUDA applications. HKC allow the administrator to fully leverage the tradi-
tional check/restore technology to increase the reliability of GPUs. We explained
how to access the kernel state by using the CUDA debugger interface, and how
to suspend/resume a running kernel. Compare to the OKC, HKC is not limit
to the check interval and exhibit high performance because of its partial recover
nature. HKC need no any source code modification and is totally transparent
to the programmer. Our evaluation showed that HKC for HPC applications is
feasible and competitive with OKC.

The new methodology proposed in HKC is simple yet effective as it is par-
ticularly suited for an implementation of fault recovery techniques for GPGPU
programs, by leveraging the tremendous computing power of GPGPUs and ex-
ploiting the SIMT characteristics of GPGPU programs.

Acknowledgment. We thank the anonymous reviewers for their helpful feed-
back. This research was supported in part by Hunan Provincial Natural Science
Foundation of China under grant 13JJB006, the National Science Foundation of
China under grants 61133005, 61070057 and 61272190.

References

1. CUDA: Compute Unified Device Architecture (accessed September 2012),
http://www.nvidia.com/object/cuda_home_new.html

2. Maruyama, N., Nukada, A., Matsuoka, S.: A high-performance fault-tolerant soft-
ware framework for memory on commodity GPUs. In: Proc. Int’l Symp. Parallel
and Distributed Processing (IPDPS 2010), pp. 1–11 (April 2010)

http://www.nvidia.com/object/cuda_home_new.html

480 L. Shi, H. Chen, and T. Li

3. Haque, I.S., Pande, V.S.: Hard Data on Soft Errors: A Large-Scale Assessment of
Real-World Error Rates in GPGPU. In: 10th IEEE/ACM International Conference
on Cluster, Cloud and Grid Computing (CCGrid), pp. 691–696 (2010)

4. NVIDIA CUDA debugger API Reference Manual,
http://developer.nvidia.com/cuda/nvidia-gpu-computing-documentation

5. Allinea DDT, http://www.allinea.com/products/ddt

6. TotalView, http://www.roguewave.com/products/totalview.aspx

7. Shi, L., Chen, H., Sun, J.: vCUDA: GPU Accelerated High Performance Computing
in Virtual Machines. In: Proc. Int’l Symp. Parallel and Distributed Processing
(IPDPS 2009), pp. 1–11 (May 2009)

8. GPGPU: General Purpose Programming on GPUs, http://www.gpgpu.org/
w/index.php/FAQ#WhatprogrammingAPIsexistforGPGPU.3F

9. Tian, Z.A., Liu, R.S., Liu, H.R., Zheng, C.X., Hou, Z.Y., Peng, P.: Molecular
dynamics simulation for cooling rate dependence of solidification microstructures
of silver. Journal of Non-Crystalline Solids 354, 3705–3712 (2009)

10. Zhong, H., Nieh, J.: CRAK: Linux Checkpoint/Restart As a KERNEL Module.
Technical Report, Columbia University,2002

11. Duell, J.: The Design and Implementation of Berkeley Labs Linux Check-
point/Restart. Paper LBNL-54941. Berkeley,2005

12. Litzkow, M., Tannenbaum, T.: J. Basney, et al. Checkpoint and Migration of UNIX
Process in the Condor Distributed Processing System. Technical Report, 1346,
University of Wisconsin Madison

13. Takizawa, H., Sato, K., Komatsu, K., et al.: CheCUDA: A Checkpoint/Restart
Tool for CUDA Applications. In: Proc. of International Conference on Parallel
and Distributed Computing Applications and Technologies, Higashi Hiroshima,
pp. 408–413 (2009)

14. Takizawa, H., Koyama, K., Sato, K., et al.: CheCL: Transparent Checkpointing
and Process Migration of OpenCL Applications. In: Proc. of International Parallel
and Distributed Processing Symposium, Anchorage, pp. 864–876 (2011)

15. Nukada, A., Takizawa, H., Matsuoka, S.: NVCR: A Transparent Checkpoint-
Restart Library for NVIDIA CUDA. In: Proc. of IPDPS Workshop, Alaska, pp.
104–113 (2011)

16. Li, T., Narayana, V.K., El-Araby, E., et al.: GPU Resource Sharing and Virtual-
ization on High Performance Computing Systems. In: Proc. of International Con-
ference on Parallel Processing, Taipei, pp. 733–742 (2011)

17. Bautista, L., Nukada, A., Maruyama, N., et al.: Low-overhead diskless checkpoint
for hybrid computing systems. In: Proc. of High Performance Computing, Dona
Paula, pp. 1–10 (2010)

18. Laosooksathit, S., Naksinehaboon, N., Leangsuksan, C., et al.: Lightweight Check-
point Mechanism and Modeling in GPGPU Environment. In: Proc. of HPCVirt
Workshop, Paris (2010)

19. Toan, N., Jitsumoto, H., Maruyama, N., et al.: MPI-CUDA Applications Check-
pointing. In: Proc. of Summer United Workshops on Parallel, Distributed and
Cooperative Processing. Technical Report, Kanazawa (2010)

20. OpenCL: Parallel Computing on the GPU and CPU. In Beyond Programmable
Shading Course of SIGGRAPH 2008 (August 14, 2008)

21. Chen, H., Shi, L., Sun, J.: VMRPC: A High Efficiency and Light Weight RPC Sys-
tem for Virtual Machines. In: The 18th IEEE International Workshop on Quality
of Service (IWQoS), Beijing, China (2010)

http://developer.nvidia.com/cuda/nvidia-gpu-computing-documentation
http://www.allinea.com/products/ddt
http://www.roguewave.com/products/totalview.aspx
http://www.gpgpu.org/w/index.php/FAQ#WhatprogrammingAPIsexistforGPGPU.3F
http://www.gpgpu.org/w/index.php/FAQ#WhatprogrammingAPIsexistforGPGPU.3F

Hybrid CPU/GPU Checkpoint for GPU-Based Heterogeneous Systems 481

22. Mohr, A., Gleicher, M.: HijackGL: Reconstructing from Streams for Stylized Ren-
dering. In: Proc. of International Symposium on Non-photorealistic Animation and
Rendering, New York, p. 13 (2002)

23. Xu, X., Lin, Y., Tang, T., et al.: HiAL-Ckpt: A hierarchical application-level check-
pointing for CPU-GPU hybrid systems. In: Proc. of International Conference on
Computer Science and Education, Hefei, pp. 1895–1899 (2010)

24. Dimitrov, M., Mantor, M., Zhou, H.: Understanding software approaches for gpgpu
reliability. In: Proc. of Workshop on General-Purpose Computation on Graphics
Processing Units, Washington, pp. 94–104 (2009)

25. Sheaffer, J., Luebke, D., Skadron, K.: A Hardware Redundancy and Recovery
Mechanism for Reliable Scientific Computation on Graphics Processors. In: Proc.
of ACM SIGGRAPH/EUROGRAPHICS Symposium on Graphics Hardware, San
Diego, pp. 55–64 (2007)

26. Maruyama, N., Nukada, A., Matsuoka, S.: A High-Performance Fault-Tolerant
Software Framework for Memory on Commodity GPUs. In: Proc. of IEEE In-
ternational Symposium on Parallel & Distributed Processing, Atlanta, pp. 1–12
(2010)

	Hybrid CPU/GPU Checkpoint for GPU-Based
Heterogeneous Systems

	1 Introduction
	2 Backgroud
	2.1 CUDA

	3 Design and Implementation
	4 Evaluation
	4.1 Runtime Overhead
	4.2 Checking Overhead
	4.3 Restore Overhead

	5 Discussion
	6 Related Work
	7 Conclusion
	References

