
Int J Parallel Prog
DOI 10.1007/s10766-017-0529-7

Have Your Cake and Eat it (Too): A Concurrent Hash
Table with Hardware Transactions

Zhiwen Chen1 · Xin He1 · Jianhua Sun1 ·
Hao Chen1

Received: 1 September 2017 / Accepted: 23 September 2017
© Springer Science+Business Media, LLC 2017

Abstract Hardware Transaction Memory (HTM) opens a new way to scaling multi-
core software. Itsmain target is to achieve highperformance onmulti-core systems, and
at the same time simplify concurrency control and guarantee correctness. This paper
presents the redesign of an existing concurrent hash table using several HTM-based
synchronization mechanisms. As compared with a fine-grained lock implementation,
HTM-based locking scales well on our testing platform, and its performance is higher
when running large-scale workloads. In addition, HTM-based global locking con-
sumes much less memory. In summary, several observations are made in this paper
with detailed experimental analysis, which would have important implications for
future research of concurrent data structures and HTM.

Keywords Hardware transactionalmemory ·Concurrent hash table ·Synchronization

1 Introduction

There is a grand challenge to develop concurrent software systems correctly and
efficiently on commodity multi-core machines. To date, programmers had several

B Hao Chen
haochen@hnu.edu.cn

Zhiwen Chen
zhiwenchen@hnu.edu.cn

Xin He
xinhe@hnu.edu.cn

Jianhua Sun
jhsun@hnu.edu.cn

1 College of Computer Science and Electronic Engineering, Hunan University, Changsha, China

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10766-017-0529-7&domain=pdf
http://orcid.org/0000-0001-9857-6283

Int J Parallel Prog

unpleasant approaches to choose from. Coarse-grained locks provide a straightfor-
ward programming model (mutual exclusion) but can lead to poor performance under
contended workload. For better performance and thread scalability, programmers have
beenmaking painstaking efforts to design fine-grained locks or lock-free schemeswith
atomic operations, which are often difficult to implement and error prone.

Fortunately, the emerging of hardware transactional memory (HTM) opens up
another possibility of scaling multi-core software and free programmers from tedious
synchronization control of concurrent data structures. HTM is built on top of the
cache coherence protocol, and has the potential of approaching the performance of
fine-grained locks or lock-free schemes while preserving the simplicity of program-
mingwith coarse-grained locks. There are a large number of concurrent data structures
based on HTM [4,9–11], which were shown to achieve comparable or higher perfor-
mance than lock-based methods under low contention.

To date, most of concurrent hash tables (CHTs) are implemented with fine-grained
locks or lock-free algorithm using atomic primitives. They are widely used in Linux
kernel and user-level systems [2,8]. In this paper, we redesign an cache-line based
hash table (CLHT) [3] to replace its lock-based synchronization with Intel restricted
transactional memory (RTM). We intend to answer several questions. Does HTM
deliver its promise with a straightforward implementation of synchronization scheme
in practice? Can we achieve both scalability and simplified concurrency control by
exploiting HTM in designing a CHT?What are themain underlying reasons that affect
the overall performance of HTM-based CHTs?

This paper tries to explore the impact of HTM on constructing concurrent hash
tables. We replace the fine-grained lock of CLHT with different HTM-based global
locks, and perform extensive comparison. According to our experimental results, we
make the following observations. First, When the workload of the CHT exceeds the
capacity of L3 cache, HTM-based global locking can achieve higher performance than
fine-grained locking. However, if the workload can be contained in on-chip caches,
frequent transaction abort due to data contention limit the performance of HTM. The
reason for this phenomenon is that all the data are stored in the cache when the data
set is small. The response time for each operation is very short, which leads to higher
probability of data conflict. Second, optimizing fine-grained locks with HTM offer
little help in improving performance. On the contrary, it introduces complexity in
concurrency control. Third, employing software-optimized HTM global locks offers
about 3X to 28X speedups compared to traditional locking methods. Some HTM-
based locks are sensitive to thread binding. Fourth, the amount of aborted transactions
has no clear correlation to the overall performance. However, the number of requested
locks and the total number of committed transactions have much larger impact on
performance.

The rest of the paper is organized as follows. Section 2 presents the background
on HTM and CHT. Section 3 provides an overview of CLHT. We make an thorough
analysis and evaluation in Sect. 4. Relatedwork is given in Sect. 5. Finally,we conclude
at Sect. 6.

123

Int J Parallel Prog

2 Background

Transactional Memory (TM) is a concurrency control paradigm that provides atomic
and isolated execution for code regions. TM is considered to be one of the most
promising solution to address the problem of programming multi-core processors. Its
most appealing feature is that programmers only need to reason locally about shared
data accesses, and let the underlying system ensure the correct concurrent execution.
This model has the potential to provide the scalability of fine-grained locking while
avoiding common pitfalls of lock composition such as deadlock.

Intel Hardware Transactional Memory Today, both software transactional memory
(STM) and hardware transactional memory (HTM) are well researched. The release
of Haswell processor with Intel TSX [6] marks the wide availability to the market. In
this paper, we only study the impact of HTM on constructing concurrent hash table.
HTM is a best-effort transaction memory in two aspects. First, a transactions working
set must fit in the per-core private cache. Otherwise, the transaction will be aborted.
Second, a transaction may also abort due to data conflict or exceptions and faults
occurring during transaction execution.

HTM provides three interfaces, xbegin, xend and xabort. Transactions are brack-
eted by xbegin and xend instruction, and use xabort to explicitly abort a transaction.
Memory addresses read and written within a transaction constitute the read-set and
write-set. If one transaction’s read-set overlaps with another transaction’s write-set
or their write-sets overlap, there will be conflicting accesses. As a hardware mecha-
nism, HTM provides no forward progress guarantee, programmers need to provide a
fall-back handler that is often a traditional lock.

Concurrent Hash Table (CHT) is one of the important concurrent data structures
that allow multiple readers and writers to access shared objects concurrently, and it is
widely used in software systems. ForCHTs, locks, lock-free andHTMare three typical
synchronization approaches to avoiding conflicts among threads trying to read or write
to the samememory address. For a lock-basedCHT, its critical section is protected by a
lock to ensure thread-safety. A lock-free mechanism uses atomic primitives to realize
synchronization between threads instead of locks. The promising features of HTM
like strong atomicity and processor-assisted conflict detection have been stimulating
the use of HTM to construct concurrent data structures.

3 Cache Line Hash Table

Our performance study uses the Cache Line Hash Table (CLHT) [3]. The design of
CLHT follows four asynchronized concurrency (ASCY) patterns, and the key insight is
“algorithms whose memory access to shared state best resemble those of a sequential
- asynchronized - algorithm tend to achieve portable scalability” [3]. CLHT achieves
high performance benefit from avoid cache line transfers. The bucket size is deliber-
ately designed to be equal to the cache line size, which guarantees that most operations
are served involving at most one cache line transfer. A cache line is separated into 8
words, one for concurrency control, six for key/value pairs, and the last for a pointer

123

Int J Parallel Prog

to link other buckets. Both lock-based and lock-free CLHT were implemented. In
this paper, we only study the lock-based version and compare it with our redesigned
HTM-based variant.

The lock-based version of CLHT deploys fine-grained concurrency control (one
word in each bucket as the lock) to synchronize update operations. An update first
checks whether the operation would be successful, and if it is, it grabs the correspond-
ing lock and performs the update operation. HTM provides strong atomicity, and aims
at reducing the complexity of fine-grained lock and overcoming the tedious procedure
of validating the correctness on multi-core processors. Yehuda Afek [1] implemented
several locking algorithms based on HTM and presented two software-improved
optimization techniques, software-assisted lock removal (SLR) and software-assisted
conflict management (SCM). In this paper, we redesign the lock-based version of
CLHT by leveraging the optimizations for HTM, in order to show that if it is possible
to not only obtain higher performance but also alleviate development efforts by using
HTM compared to traditional locks.

4 Evaluation and Analysis

4.1 Experimental Platform and Configurations

Our evaluation was conducted on a Linux workstation with two Intel Xeon Broad-
well EP/EN/EX processors (32 physical cores/64 logical cores) and 64 GB memory
installed. The CPU clocks at 2.1 GHz and the size of the three-level caches are 64 KB,
256 KB and 40 MB respectively. The operating system was Ubuntu 16.04.

We use GCC-4.8.0 to compile the source code. Except specifically noted below,
all the experiments are run without explicitly thread binding. For simplicity, keys
and values are both 64-bit integers in our benchmarking, and queries including find,
remove, and add are randomly generated to conform to pre-defined distributions. In
each test duration, n threads are created to execute find, remove and add operations.
All of the n threads spawned at the start of a test will execute the same benchmark
with u% updates and 100-u% lookups (By default, the update rate is 10%). Half of
updates are insert operations, the other half are removes. Other related parameters are
described below. d is the time to run a benchmark in milliseconds. i is the number of
elements pre-filled in a hash table, for a given initial size i, we initially fill the hash
table with random elements from a domain of size 2i.

4.2 Scalability

Throughput is one of the most intuitive metrics to evaluate the performance of con-
current hash table. In this section, we evaluate the thread scalability of CLHT with
different synchronization methods, including a fine-grained locking, and a coarse-
grained lock based on HTM. The former is originally implemented in [3], and we
implement the latter using the techniques presented in [1]. We first study how the
throughput scales with the increasing number of threads.

123

Int J Parallel Prog

 0

 250

 500

 750

 8 16 24 32 40 48 56

Th
ro

ug
hp

ut
 (M

op
s/

s)

Threads

fine-grained
slr-scm-mcs

 0

 250

 500

 750

 8 16 24 32 40 48 56

Th
ro

ug
hp

ut
 (M

op
s/

s)

Threads

fine-grained
slr-scm-mcs

(a) (b)

Fig. 1 Throughput of the fine-grained locking and the global MCS lock based on HTM with SLR and
SCM. The update rate is 10% and the initial size is one thousand and one million respectively a i = 103, b
i = 106

In this experiment, we runworkloadswith one thousand (can be contained in private
cache) and one million (large than the capacity of L3 cache) elements initialized, and
each workload has 10% update operations. Each test lasts for a duration of 5 seconds.
The final results are the average of 5 runs as depicted in Fig. 1. For the workload with
onemillion elements, both thefine-grained lock and theHTMvariant showgood thread
scalability. The throughput increases as the number of cores. Our implementation of
HTM lock obtains higher performance. Specifically, the performance under the fine-
grained lock is 81%of theHTM-based lock. However, when the size of initial elements
is less than the capacity of private cache, the fine-grained lock outperforms the HTM
version. The reason is that the HTM global lock encounters more data conflicts that
cause frequent transaction aborts.

From the perspective of complexity,HTM-basedCLHT ismuch easier to implement
than the one with fine-grained lock. It uses a single global lock to protect the critical
section, while we need to pay much more attention to implement a fine-grained lock
when constructing concurrent data structures. Furthermore, the fine-grained locking
scheme consumes more memory. For example, CLHT take a cache line as a bucket, it
split a cache line into 8 words, one for synchronization, six for key/value storage and
one for pointer linking to the next bucket. If 1024*1024 buckets are created, we need
to allocate 8 MB more memory for the storage of synchronization variables.

Implication 1. According to the experimental results, we make two observations.
First, when dealing with large-scale workloads, using HTM to construct concurrent
hash table would be beneficial from two aspects: (i) the performance and scalability is
competitive; (ii) it achieves the goal of reducing memory consumption and simplifying
programming. Second, when workloads can be fit in the on-chip cache, an HTM-based
global lock may result in poor performance because of frequent transaction aborts
due to data conflicts.

4.3 Fine-Grained Lock with HTM

We may ask if it is necessary to optimize the fine-grained locking with HTM when
it well satisfy the performance requirement. To answer this question, we conduct a

123

Int J Parallel Prog

 0

 250

 500

 750

 8 16 24 32 40 48 56

Th
ro

ug
hp

ut
 (M

op
s/

s)

Threads

fine-grained
fine-grained-rtm

 0

 250

 500

 750

 8 16 24 32 40 48 56

Th
ro

ug
hp

ut
 (M

op
s/

s)

Threads

fine-grained
fine-grained-rtm

(a) (b)

Fig. 2 Throughput of regular fine-grained lock and HTM-based fine-grained lock a i = 103, b i = 106

comparison between two versions of CLHTunder fine-grained locking, onewithHTM
and onewithout. As shown in Fig. 2, the performance difference is negligible under the
two settings (we get the same resultswhen i is set to 1million) except for the casewhere
n is larger than48 in the right figure. The reason is that fine-grained locks can effectively
prevent multiple threads from accessing the same memory address at the same time.
In such a case, it is not meaningful to adopt HTM to achieve higher performance.
In Fig. 2a, when the number of threads exceeds 48, HTM-based lock exhibits better
performance, because the contention increases with more threads involved, but HTM
can promote parallelism if conflicts are not dominant.

Implication 2. Traditional fine-grained locks can offer good thread scalability and
performance. Under these premises, using a fine-grained lock enhanced with HTM
neither brings the advantage of simplifying concurrency control, nor improves the
overall performance.

4.4 Comparison of Software-Improved HTM

As mentioned in Sect. 3, SLR and SCM are two software-improved methods to opti-
mize HTM-based lock. SLR uses HTM to transactionally execute critical sections
without adding the lock variable to its read-set until it is ready to commit. It reads
the lock and commits if the lock is not taken; otherwise, it aborts and retries. If it
fails a few times, the execution fall-backs to the non-speculative path by acquiring the
lock. In SLR, a thread acquiring the lock does not automatically conflict with running
transactions nor does it prevent an arriving thread from starting its transaction specula-
tively. Since in SLR a speculative transaction may run concurrently with a transaction
that hold the lock, the speculative transaction may see an inconsistent state (which
guarantees that it will fails to commit and abort).

SCM allows non-conflicting threads to continue their speculative HTM-based run
without any interference from conflicting threads. By adding a serializing path to the
lock implementation, an aborted thread has to acquire a distinct auxiliary lock (without
using lock elision) in order to rejoin the speculative executionwith other threads. Using
this approach, conflicting threads are serialized among themselves and do not interfere

123

Int J Parallel Prog

Algorithm 1 Lock() method of slr-scm-mcs scheme.
shared variables:
1: lock: speculative lock
thread lock variables:
2: retries: int
3: my_node, my_aux_node: qnode_t
4: function lock
5: retries ← 0
6: speculative path:
7: XBEGIN(line 10)
8: return (0)
9:
10: fallback path:
11: retries ← retries + 1
12: if retries < M AX_RET I RE S then
13: goto line 6
14: end if
15: if thread_handle == lock → aux_lock_owner then
16: lock → aux_retries + +
17: else
18: aux_lock.lock()
19: end if
20: if reason&T X N_M AY_SUCC E E D then
21: if lock_aux_retries < M AX_RET RI E S then
22: goto line 6
23: end if
24: end if
25: main_lock.lock()
26: return (0)
27: end function

Algorithm 2 unlock() method of slr-scm-mcs scheme.
1: function unlock
2: if XTEST() != 0 then
3: if lock →! = 0 then
4: XABORT()
5: end if
6: XEND()
7: if thread_handle == lock → aux_lock_owner then
8: lock → aux_lock_owner ← I N V AL I D_T H RE AD_H AN DL E
9: lock → aux_retries ← 0 aux_lock.unlock()
10: end if
11: else
12: main_lock.unlock()
13: end if
14: end function

with other threads. Only if the thread fails due to a conflict many times it must give
up and acquire the original lock. Algorithms 1 and 2 shows a brief description of an
SLR-based MCS lock with conflict management.

In this section, we evaluate CLHT with different locking strategies under high con-
tentions.We test the following six schemes: (1) StandardMCS lock (non-speculative);
(2) HTM-based MCS with lock removal (slr-mcs); (3) HTM-retries; If a transaction

123

Int J Parallel Prog

 0

 250

 500

 750

 8 16 24 32 40 48 56

Th
ro

ug
hp

ut
 (M

op
s/

s)

Threads

mcs
slr-mcs

htm-retry
scm-ttas-mcs

slr-scm-mcs
scm-ttas-opt

 0

 250

 500

 750

 8 16 24 32 40 48 56

Th
ro

ug
hp

ut
 (M

op
s/

s)

Threads

mcs
slr-mcs

htm-retry
scm-ttas-mcs

slr-scm-mcs
scm-ttas-opt

(a) (b)

Fig. 3 Throughput with global locks. The experiments are run without explicit thread binding method. u
is 10 a i = 103, b i = 106

aborts, we retry it several times as recommended by Intel [6]. (4) HTM version of
ttas with conflict management; (5) SLR-based MCS lock with conflict management
(slr-scm-mcs); and (6) Optimistic SCM (scm-ttas-opt), in which a thread only acquires
the lock non-speculatively after retrying speculatively 10 times.

Figure 3 presents our experimental results running workloads with one thousand
and one million elements initialized respectively. As expected, the traditional MCS
lock exhibits poor scalability and the lowest performance. There are some differences
between the two sub-figures of Fig. 3. When the workload is small, all of the lock-
ing schemes encounter a performance degradation at a certain n due to increasing
data conflicts. The slr-mcs, slr-scm-mcs, HTM-retries obtain their maximum through-
put at n = 24. However, the performance of scm-ttas-mcs and scm-ttas-opt are just
marginally higher than traditionalMCS lock. CLHT encounters performance degrada-
tion for small data size, because at such a scale more threads indicate large probability
of incurring contentions. When the workload is larger than the capacity of L3 cache,
slr-mcs, slr-scm-mcs, and HTM-retry all achieve good scalability.

Interestingly, we find that the performance of CLHT under HTM-based global lock
can be affected by thread binding strategy. Figure 4 displays the throughput curves of
CLHT obtained by explicitly binding threads. At first, the slr-scm-mcs, slr-mcs and
HTM-retry are less sensitive to thread binding and more stable than other schemes.
Secondly, scm-ttas-mcs and scm-ttas-opt scale within a single socket. While, their
performance decline with the increasing of thread count. We attribute this to their
weak ability to deal with cross-socket communication on a non-uniform memory
access architecture.

Next, we analysis the reason caused the differences between Figs. 3 and 4 from
the point of the total number of transactions, transaction abort rate, and the number of
lock requests.

Implication 3. Our conclusion is threefold: (i) running a workload under high
contention, traditional MCS lock has poor performance and scalability; (ii) using locks
based on HTM, the performance improvement depends on the types of optimization
technique employed; (iii) slr-scm-mcs and HTM-retry are more competitive than other
options in scalability.

123

Int J Parallel Prog

 0

 250

 500

 750

 8 16 24 32 40 48 56

Th
ro

ug
hp

ut
 (M

op
s/

s)

Threads

mcs
slr-mcs

htm-retry
scm-ttas-mcs

slr-scm-mcs
scm-ttas-opt

 0

 250

 500

 750

 8 16 24 32 40 48 56

Th
ro

ug
hp

ut
 (M

op
s/

s)

Threads

mcs
slr-mcs

htm-retry
scm-ttas-mcs

slr-scm-mcs
scm-ttas-opt

Fig. 4 Throughput with global locks. The experiments are run with explicit thread binding. u is 10. we
assign successive threads to cores that are as close as possible in the topology map of the platform to get
high data reuse between threads a i = 103, b i = 106

Table 1 Statistics of HTM schemes. n = 32 and u = 10

Num. locks
(million)

Total TMs
(million)

Aborts (million) Rate (%)

HTM-retry 170/160 290/360 53/67 18.3/18.5

slr-mcs 160/16 290/360 52/67 18.6/18.6

slr-scm-mcs 160/160 300/350 53/66 17.8/19.0

scm-ttas-mcs 48/12 110/130 51/62 48.6/48.4

scm-ttas-opt 110/48 220/180 53/63 23.0/35.4

The second column (c2) represents the number of lock requests, the third column (c3) is the total number of
transactions, the fourth column (c4) is the number of aborted transactions, and the last column is the abort
rate computed by c4/c3. Two groups of data are presented for i = 1 million and i = 1 thousand respectively

4.5 Factors Affecting HTM Performance

Figure 3 displays the differences between the five HTM schemes. We use Intel perfor-
mance counter monitor (PCM) to collect runtimemetrics. Due to space constraints, we
only present the most relevant data to discuss our problem. Table 1 shows the sampled
data when n is 32, i is set to 1 million and 1 thousand, and u is 10. Transaction abort
rate is measured by dividing the number of aborted transactions by the total number of
transactions (including aborted and committed). There are few changes of the aborted
transactions with different HTM schemes. The number of aborted transactions is not
the main bottleneck of HTM schemes, but the number of lock requests and transac-
tions directly impacts the overall performance. More lock requests and committed
transactions result in higher throughput. For slr-mcs, scm-ttas-mcs and scm-ttas-opt,
the number of lock requests and committed transactions is greater than that of the
other two schemes, which can explain their superior performance in Fig. 3.

We observed that the throughput decreases as the abort rate rises. We run CLHT
with different configurations to explore the relationship between abort rate and thread
number and update rate and initial size. Table 2 presents the relationship between
thread number and abort rate. The second and third columnofTable 2 represent the total

123

Int J Parallel Prog

Table 2 Variations of the abort
rates with the number of threads
for slr-scm-mcs scheme. u = 10

n Total TMs (million) Aborts (million) Rate (%)

2 156/156 70/66 43.6/42.3

8 228/239 72/59 31.6/21.5

16 303/298 73/64 24.1/19.5

32 382/349 80/67 20.9/19.2

40 399/299 77/74 19.3/24.8

48 495/310 87/78 17.6/25.2

64 522/316 90/89 17.2/26.0

The second, third, and last
column are the same with
Table 1, and two groups of data
are presented for i = 1 million
and i = 1 thousand respectively

Table 3 Variations of the abort rates under different update rates for slr-scm-mcs scheme. n = 32

u (%) Total TMs (million) Aborts (million) Rate (%)

0 346/554 73/60 21.1/10.8

10 320/352 70/66 21.9/18.8

80 282/273 74/70 26.4/25.6

The second, third, and last column are the same with Table 1, and two groups of data are presented for i = 1
million and i = 1 thousand respectively

number of transactions and the aborted transactions respectively. Both the total number
of transactions and aborted transactions are increasing with thread counts. While the
growth rate of aborted transactions are lower than that of the total transactions. In
other words, with the increase of threads there are more committed transactions than
aborted transactions. This trend is consistent with the thread scalability curve in Fig. 1.

Table 3 displays the relationship between the abort rate and percentage of update
operation. We run three experiments with read-only, low update rate, and high update
rate workload. For the read-only workload (u = 0), we get the lowest abort rate,
because in the read-only scenario, the absence of write access to memory incurs little
data conflicts. Higher update rates result in higher abort rates, consequently lower
performance.

5 Related Work

Concurrent hash tables have been adopting fine-grained locks [5,8] or lock-free meth-
ods [7] to unleash concurrency and provide consistency. Actually, existing approaches
are well designed and scales on multi-core systems. However, these synchronization
mechanisms are either hard to verify the correctness, or not performance optimal, or
incur complexity in development. The wide availability of HTMopens up another way
for thread synchronization. Eunomia [9] is a design pattern for concurrent search tree
structures under high contention. It contains several principles to reduce HTM aborts.
DBX [12] is a serializable in-memory database employing restricted transactional
memory. Its key idea is to use HTM to protect memory store and transactional execu-
tion. Hopscotch [4] is a concurrent hash table with fine-grained lock, and scales under

123

Int J Parallel Prog

read-dominant workloads. Z. Wang et al. [11] take skiplist as an example to illustrate
the pitfalls and opportunities of multi-core scaling when using HTM. Y. Afek et al.
[1] provide two software mechanisms, SLR and SCM, to improve concurrency levels
attained by lock-based programs using HTM-base lock elision.

6 Conclusion

This paper takes a concurrent hash table, CLHT, as an example to answer several ques-
tions regarding HTM-based concurrent hash table. We evaluate the thread scalability,
compare different synchronization schemes under both low and high contention, and
explore the factors related to transaction abort rate. We find that HTM-based global
lock can not only achieve good scalability but also ease the design of CHTs. In future
work, we plan to deploy HTM-based CHTs in practical applications and implement
other concurrent data structures to further validate the findings made in this work.

Acknowledgements This research was supported in part by the National Science Foundation of China
under Grants 61772183, 61572179 and 61272190.

References

1. Afek, Y., Levy, A., Morrison, A.: Software-improved hardware lock elision. pp. 212–221 (2014)
2. Arcangeli, A., Cao, M., McKenney, P.E., Sarma, D.: Using read-copy-update techniques for system v

ipc in the linux 2.5 kernel. In: USENIX Annual Technical Conference, FREENIX Track, pp. 297–309
(2003)

3. David, T., Guerraoui, R., Trigonakis, V.: Asynchronized concurrency: The secret to scaling concurrent
search data structures. SIGARCH Comput. Archit. News 43(1), 631–644 (2015). https://doi.org/10.
1145/2786763.2694359

4. Goel, H., Gershovitz, M.: Concurrent hopscotch hash map. http://cs.tau.ac.il
5. Herlihy, M., Shavit, N., Tzafrir, M.: Hopscotch hashing. In: International Symposium on Distributed

Computing, pp. 350–364 (2008)
6. Intel, R.: Intel r 64 and ia-32 architectures. Software developers manual. (2015)
7. Liu, Y., Zhang, K., Spear, M.: Dynamic-sized nonblocking hash tables. In: Proceedings of the 2014

ACM Symposium on Principles of Distributed Computing, pp. 242–251 (2014)
8. Metreveli, Z., Zeldovich,N.,Kaashoek,M.F.: Cphash:A cache-partitioned hash table. In:ACMSigplan

Symposium on Principles and Practice of Parallel Programming, pp. 319–320 (2012)
9. Wang, X., Zhang, W., Wang, Z., Wei, Z., Chen, H., Zhao, W.: Eunomia: Scaling concurrent search

trees under contention using htm. In: ACM Sigplan Symposium on Principles and Practice of Parallel
Programming, pp. 385–399 (2017)

10. Wang, Z., Mu, S., Cui, Y., Yi, H., Chen, H., Li, J.: Scaling multicore databases via constrained parallel
execution. In: International Conference on Management of Data, pp. 1643–1658 (2016)

11. Wang, Z., Qian, H., Chen, H., Li, J.: Opportunities and pitfalls of multi-core scaling using hardware
transaction memory. In: Asia-Pacific Workshop on Systems, p. 3 (2013)

12. Wang, Z., Qian, H., Li, J., Chen, H.: Using restricted transactional memory to build a scalable in-
memory database. In: European Conference on Computer Systems, pp. 1–15 (2014)

123

https://doi.org/10.1145/2786763.2694359
https://doi.org/10.1145/2786763.2694359
http://cs.tau.ac.il

	Have Your Cake and Eat it (Too): A Concurrent Hash Table with Hardware Transactions
	Abstract
	1 Introduction
	2 Background
	3 Cache Line Hash Table
	4 Evaluation and Analysis
	4.1 Experimental Platform and Configurations
	4.2 Scalability
	4.3 Fine-Grained Lock with HTM
	4.4 Comparison of Software-Improved HTM
	4.5 Factors Affecting HTM Performance

	5 Related Work
	6 Conclusion
	Acknowledgements
	References

