
VMRPC: A High Efficiency and Light Weight RPC
System for Virtual Machines

Hao Chen, Lin Shi and Jianhua Sun
Advanced Internet and Media Lab

School of Computer and Communication
Hunan University, Chang Sha, 410082, China

{haochen,shilin,jhsun}@aimlab.org

Abstract—Despite advances in high performance inter-domain
communication for virtual machines (VM), data intensive appli-
cations developed for VMs based on traditional remote procedure
call (RPC) mechanism still suffer from performance degradation
due to the inherent inefficiency of data serialization/deserilization
operation. This paper presents VMRPC, a light-weight RPC
framework specifically designed for VMs that leverages heap
and stack sharing to circumvent unnecessary data copying and
serialization/deserilization, and achieve high performance. Our
evaluation shows that the performance of VMRPC is an order
of magnitude better than traditional RPC systems and existing
alternative inter-domain communication mechanisms. We adopt
VMRPC in a real system, and the experiment results exhibit
that the performance of VMRPC is even competitive to native
environment.

I. INTRODUCTION

Virtual machine technologies offer a number of benefits in
the design and implementation of middleware. These include
the ability to make more efficient use of hardware resources
and to minimize network overhead by co-locating multiple
modules acting on the same data on the same physical ma-
chine. Recently, a large category of communication intensive
distributed applications and software components have been
ported to virtual machine platform, such as high performance
storage systems [17], network-router systems [9], and graph-
ics rendering systems [15]. These applications desire for a
dedicated communication protocol. Although researchers have
developed high performance solutions for these applications,
a general purpose RPC system for virtual machines has never
been put on the table.

In our former study vCUDA [20], we faced the same prob-
lem, the study involved building a virtual CUDA (Compute
Unified Device Architecture) system in VMM platform. The
task of the virtual CUDA system was to interpret the normal
API flow of a CUDA application in a VM and to redirect them
to another privileged VM. Redirection was realized by using
a traditional RPC system XMLRPC [25] . However, we found
XMLRPC caused serious performance degradation in VMM
platform, which motivated us to develop a high-throughput
inter-domain RPC system for data-intensive applications like
vCUDA described above.

In this paper we present the design and implementation of
a new RPC system, VMRPC (Virtual Machine Remote Proce-

dure Call). The main goal of VMRPC is to provide extremely
low latency and high throughput between VMs in the same
VMM. VMRPC combines the strengths of the local RPC
optimization and inter-domain communication optimization
techniques to avoid the performance issues that stem from the
OS or VMM. Zero copy is also achieved in VMRPC, so that
there is no user level or kernel level data copy in a regular RPC
operation. Our evaluations show VMRPC’s performance is ten
folds better than traditional RPC systems in VMMs. For now,
we have implemented VMRPC in Xen [1] and the VMWare
[22]. VMRPC’s interface is small and clean, and there are only
8 APIs exposed to the programmer, which makes VMRPC
easy to learn and use. As a case study, we apply VMRPC
to the vCUDA project, and experimental results reveal that
VMRPC significantly reduces the virtualization overhead.

In this paper, we make the following contributions:
• A low latency and high throughput inter-VM RPC so-

lution, geared towards enterprise appliances that require
dedicated high performance RPC in VMMs.

• Well-defined interfaces and abstraction layers, making
VMRPC portable across different VMMs.

• Extensive performance evaluations and a real system case
study, quantifying the merits of VMRPC.

The rest of this paper is organized as follows. Section II
covers background for RPC research and the relevant facility
in Xen and VMWare. Section III and section IV discusses the
design and implementation of VMRPC respectively. VMRPC
interface is introduced in Section V. Next we evaluate VMRPC
in Section VI along with a case study. In Section VII, we
discuss related work. Finally, in Section VIII we present our
conclusions.

II. BACKGROUND

In the rest of this paper, the term hostOS refers to the
administrative OS (or domain0 according to Xen’s semantics).
The term guestOS refers to a VM (or domainU in Xen).

A. Bottlenecks of Traditional RPC

From our observation, factors that affect the efficiency of
traditional RPC systems in VMM environment are as follows:

Problem 1: high latency, by using socket-like communica-
tion API.

In VMM, socket-like API has to pass through TCP/IP
protocol stacks both in the hostOS and guestOS, which adds
extra overhead to the communication path. Although progress
has been made to optimize this kind of communication in
VMM, it is still less competitive than native asynchronous
communication mechanism.

Problem 2: low bandwidth data channel, layered on top of
TCP/IP protocol stack.

TCP/IP protocol was originally developed to transfer data
over an unreliable network. It performs poorly when used be-
tween co-resident VMs due to VMM’s virtualization overhead.
For example, it was reported that the page flipping mechanism
in Xen would degrade the performance of network I/O [14],
[27].

Problem 3: complex and expensive serialization/deserializa-
tion procedure.

Serialization/deserialization is a standard operation of RPC
systems. It is expensive because it involves running a large
amount of code for looking up data tables, walking the data
structure to pack them properly. In a typical RPC, serializa-
tion/deserialization procedures commonly occur four times,
resulting in enormous computation overhead.

Problem 4: too many system calls involved in each RPC.
Traditional RPC systems have two inherent problems. First,

its performance is architecturally limited by the cost of in-
voking the kernel system calls, data copying between user
space and kernel space, and the possible thread rescheduling;
Second, in VMs some system calls have to be trapped and
handled by the VMM, leading to significant overhead in
context switch. In summary system calls in virtual machines
are more expensive than in non-virtualization environment.

B. Local RPC Optimization

Local RPC optimization techniques dedicated to developing
a high efficiency RPC system work in a non-virtualized
environment, such as LRPC [2], URPC [3], SHRIMP RPC
[5], ARPC [26]. LRPC reduced the cost of same-machine com-
munication to nearly the lower bound imposed by hardware.
Such impressively high performance derives from two aspects:
shared memory and scheduling. Operating systems are able
to use the global address space or memory mapping infras-
tructure, and take advantage of the flexibility of scheduling
to speed up RPC operations. Shared memory is helpful for
reducing the time of data copy, in some cases like LRPC, it
also avoids the serialization/deserialization operation both in
the client and server. The optimization of scheduling allows
for fast responses, and it also eliminates some context switch
overhead.

C. Inter-domain Communication Optimization

Inter-domain optimization techniques, such as Xensocket
[27], Xenloop [23] and Xway [14], have mainly focused on
strengthening the throughput of data transmission between
VMs that are co-resident within a single physical machine.
The general approach commonly adopted by most of these
techniques is to build a fast inter-domain channel with shared

TABLE I
THE EFFECT OF ACCELERATION OF XENLOOP ON ICE.

Benchmark Scale w/o Xenloop w/ Xenloop
ICE send ByteSeq Mbps 1541 1923
ICE receive ByteSeq Mbps 818 846
ICE send FixedSeq Mbps 391 401
ICE receive FixedSeq Mbps 291 292
ICE send VarSeq Mbps 67 66
ICE receive VarSeq Mbps 57 57

memory. It is evident that the efficient communication chan-
nel will improve the performance of RPC systems, but our
experiments show that the data presentation in RPC systems
primarily leads to the inefficiencies, instead of the communi-
cation channel. More concretely, Table I exhibits the effect
of acceleration of Xenloop on ICE [11] with three data
types of different complexity (defined in Table IV) in a test
machine equipped with Intel Celeron D 331 and 2G RAM.
Even under the best circumstances (e.g. ’ICE send ByteSeq’),
the performance gain is approximately 25%. Once the data
type becomes more complex, the acceleration rate is almost
negligible (e.g. ’ICE receive FixedSeq’). It helps prove our
assumption: the efficiency of data presentation layer is more
important than the data transmission layer for RPC systems in
VMMs.

D. Shared Memory Facilities

We briefly discuss two systems that offer interfaces to
manipulate shared memory in Xen [1] and VMWare [22]
respectively.

The research community has already developed some VMI
(Virtual Machine Introspection) mechanisms [13], [16], [10]
to bridge the semantic gap between the VMM and OS.
XenAccess [24] is one of such tools developed for Xen
hypervisor. The memory introspection library of XenAccess
offers applications executing in dom0 the ability to monitor
or manage the memory of another virtual machine.

The Virtual Machine Communication Interface [21] is a
VMWare specific infrastructure, which consists of two parts:
the datagram API and the shared memory API. The datagram
API allows processes in different VMs to send messages to
each other. The shared memory API allows an application in
a virtual machine to share its memory with other applications
that reside in host or another virtual machine on the same host.

III. DESIGN

In designing VMRPC, we used the following goals as
guidelines:

• Non-intrusiveness: VMRPC should not add extra com-
plexities to system level components, and only depend on
the primitives exported by VMMs.

• High performance: VMRPC should enable low latency,
high throughput RPC with low CPU consumption.

• Portability: VMRPC should support different VMM plat-
forms, and be easy to port across VMMs.

• Simplicity: VMRPC’s interface should be small, clean,
and easy to use.

• Security: VMRPC should not break the isolation princi-
ple already established in VMMs.

A. Non-intrusiveness

There could be several different approaches to implementing
a high performance RPC system in VMM environment. A
straightforward way is to modify the VMM to support a
new data channel, but it is not a good idea to add extra
functionalities to VMMs, which may introduce security vul-
nerabilities and complicate the implementation of the VMM.
The other solution is to develop a customized kernel module
in hostOS and/or guestOS to establish a kernel level fast data
channel, but that also means VMRPC would be tightly bound
to specific kernel version or type of operating system. At last,
we decided to implement VMRPC using only the primitives
exported by VMM to the user level, without any modifications
to Xen/VMWare and any modules/patches to hostOS/guestOS.

B. High Performance

The way to achieve high performance in VMRPC is mainly
influenced by the issues exposed by traditional RPC systems
as discussed in section II-A: Problem 1 can be resolved by
replacing the socket interface with the VMM platform-specific
notification mechanism like the event channel in Xen. We
solve Problem 2 by utilizing shared memory mechanism, as
previously done by many inter-domain communication tools
like Xway or Xenloop. In order to overcome Problem 3 and
Problem 4, we move the memory sharing activities to the
user level, where the elimination of data serialization/deseri-
alization operation is made possible. Since the OS and VMM
are bypassed in the main control flow of RPC, VMRPC can
minimize the frequency of system calls. In general, VMRPC
combines the strengths of the local RPC optimization and the
inter-VM communication optimization strategies to achieve the
goal of high performance.

C. Portability

Under the guidance of the portability principle, VMRPC
is divided into three subsystems: notification channel, control
channel and transport channel, which are shown in Figure 1.
Dividing VMRPC into three subsystems makes it possible of
separating most functionalities from the underlying VMM im-
plementation, thus facilitating the porting process maximally.

D. Simplicity

Being different from Xway or Xenloop, VMRPC is not
binary-compatible to legacy systems. A clean and well-defined
interface is critical to VMRPC. Traditional RPC frameworks
are very invasive, requiring language specific tools and code
generators to work, and often lead to huge complexity and in-
tricate code modifications. In contrast, VMRPC needs neither
IDL nor code generator, because IDL is replaced by a standard
C function calling convention, and code generator is replaced
by a convenient C preprocessor macro. By keeping VMRPC
interface clean and small, it is possible for developers to start
writing production-quality code without having to go through
a long learning process.

socket

serialization
/unserialization

server

VMM

TCP/IP

socket

serialization
/unserialization

client

TCP/IP

VMRPC

server

VMM

VMRPC

client

transfer channel

control channel

notification channel

Traditional RPC VMRPC

VM VM VM VM

Fig. 1. Architectures of VMRPC and Traditional RPC.

E. Security

VMRPC is specifically tailored towards the needs of an
enterprise-class appliance, thus we make some reasonable
assumptions as in Fido [8]. First, software components in
VMs are assumed to be non-malicious, and granting read-
only access to shared memory is acceptable. Second, the
possibility of corruptions propagating from a faulty VM to
a communicating VM via read-only access of memory is
low. Despite of these assumptions, we incorporate several
strategies such as managed memory allocation, protection for
sharing stack, and control flow verification etc., into VMRPC
to promote the whole system security to a significant extent,
as detailed in Section IV-C.

IV. IMPLEMENTATION

To validate the design goals as discussed above, we have
implemented VMRPC in two VMMs: Xen and VMWare
Workstation. Since we first implemented VMRPC in Xen, we
use it as the representative VMM to describe our implemen-
tation details.

Figure 1 depicts the architectural differences between tra-
ditional RPC and VMRPC. VMRPC consists of three compo-
nents: notification channel, control channel and transfer chan-
nel. The transfer channel is a pre-allocated shared data section
dedicated to large-capacity and high-speed data transmission.
Control channel is also realized as a shared zone of two
processes, while it is much smaller and only used to store
control information of RPC like command index, function
index, call flags, call parameters and stack content. Control
channel can be regarded as the substitute of the XDR (External
Data Representation) protocol of traditional RPC systems.
Notification channel serves as an asynchronous notification
mechanism, similar to hardware interrupt or software signal.
Its main task is to trigger RPC actions and synchronize concur-
rent accesses to shared memory. Notification channel does not
carry any actual payload, the RPC related information resides
in the control channel and transfer channel. In VMRPC, the
notification channel is the only place where the OS and VMM
must be involved.

Figure 1 also implies the advantages of VMRPC against
traditional RPC systems. First, moving communication and
control to the user level leaves the kernel (and VMM) only
responsible for context switching between the server and

client. Second, VMRPC circumvents the TCP/IP stack, and
directly exploits the VMM platform-specific shared memory
mechanism to present and transfer data in user space. Mean-
while the expensive serialization/deserialization process is also
eliminated. Last, the VMM built-in notification mechanism
ensures the minimized latency of RPC operations.

In short, the efficiency of VMRPC comes from the ”making
the common case fast” approach to avoiding unnecessary
synchronization, kernel-level thread management, and data
copying between different address spaces on the same ma-
chine.

A. Memory Mapping

As shown in Figure 2, VMRPC utilizes the user-level
memory mapping to set up the control channel and transfer
channel. In Xen, the process is simple: the client allocates
a new virtual memory space, then the server maps the cor-
responding physical page frame in its own virtual address
space by using the memory introspection API of Xenac-
cess: user va map range. The case of VMWare is somewhat
different, VMCISharedMem Create is launched by server to
create a shared memory service, and then the client attaches it
by calling VMCISharedMem Attach. The following are some
important issues related to memory mapping that arose in
developing VMRPC:

Efficiency of mapping: When we map 100M memory
from a VM to dom0 (host in VMWare), Xenaccess consumes
only 1.5 seconds while VMCI takes 23 seconds. We observed
during the execution of VMCI that the system temporary
folder (/tmp directory in Linux) generated a randomly named
file whose size is exactly 100M bytes. We speculate that the
inefficiency stems from the fact that VMCI is not a shared
memory mechanism directly built on page table mapping,
based on the file system activities occured in the mapping pro-
cess. Further optimization to Xenaccess’s mapping is possible,
but it is beyond the scope of this paper.

Even if creating mappings is expensive (as compared to the
runtime overhead), these operations are performed only once
at initialization. When the memory mapping is established,
all subsequent communication between address spaces will be
performed through logical channels that are pair-wise shared
between the client and server.

Avoid demand paging: Most modern operating systems
implement a demand paging virtual memory architecture. OS
allocates a real physical page frame only if an attempt is
made to access it. While this strategy works fine in most
cases, it is not desirable to our design of memory mapping.
In VMRPC, when a mapping operation happens in the server
side, we must ensure that there are sufficient physical pages to
be mapped, otherwise this operation will fail. This limitation
can be resolved by performing a write access to all the pages
belonging to that shared memory region, which makes sure
there are enough physical memory frames to be attached to
each page of the shared virtual memory.

Avoid page swapping: Another problem is that the page
swapping strategy adopted by operating systems may swap the

Physical memory

Server virtual address space Client virtual address space

RPC stack

control page

main stack

share heap

main stack temp stack

RPC stack

Fig. 2. Virtual address mapping in VMRPC.

share pages out to the disk, which will lead to inconsistent
mappings between the server and client. We prevent this
situation from happening by using the page lock mechanisms
provided by OS, such as mlock in Linux and virtuallock in
Windows. These functions may be subject to OS restrictions
(such as the total number of pages that can be locked simul-
taneously), but so far, these have not caused any problems in
our development environment.

Offset handling: Neither Xenaccess nor VMCI supports
mapping the virtual memory at a specified address. In Xen, the
client’s shared region is mapped to an arbitrary address in the
server’s address space. As a result, the pointer arguments (if
any) of function calls on the client side are incomprehensible
when used as-is by the corresponding functions on the server
side. They need to be translated to appropriate address on
the server side in order for the RPC operations to execute
properly. Since the length and content of shared memory are
identical on both sides, all VMRPC need to do is to add or
subtract a constant offset to each pointer argument. VMRPC
cannot accomplish this automatically due to its inability of
distinguishing pointers from other types of arguments, because
there is no explicit type information available in VMRPC. Our
choice is to provide another API VMRPC offset that must be
invoked to compute the offset between the server and client
address space. Details about this API will be given in section
V.

B. Transfer Channel

Transfer channel is built on top of shared heap. The shared
heap is a pre-allocated memory region that is mapped into
both of the server and client address space, large volume of
data can be directly transferred through it. The shared heap is
different to the standard operating system heap, but the two
can be used interchangeably by applications. VMRPC provides
management APIs to specify the size of the shared heap and
set up or destroy a shared heap.

Zero copy: For inter-domain RPCs, exploiting shared
memory is a straightforward way to avoid copying from
user space to kernel space and vice versa. We ensure data
accessibility by mapping the memory in source process’s
address space to destination process’s address space, so that

there are no user layer copies. Kernel layer copies are also
avoided by removing the kernel and VMM from the critical
data transmission path.

Shared heap size: Since the mapped address of shared
region in the server end is totally random, it is very difficult to
change the size of shared region dynamically once established.
The efficiency of VMRPC depends on the programmer’s
ability to accurately predict and define the size of a shared
heap. Oversized shared heap is wasteful because the corre-
sponding memory pages will be occupied until the end of the
RPC procedure. While undersized shared heap may result in
allocation failures in the shared region. We are planning to
develop dynamic heap management mechanisms to remedy
this situation.

Heap management: We implemented a simple heap
management interface. When a piece of data needs to be
shared, the user should use VMRPC malloc instead of the
regular C function malloc to allocate memory blocks. When
the memory is no longer in use, VMRPC free should be called,
which operates in the same way as the standard equivalent
free but in the VMRPC’s shared heap. VMRPC also provides
APIs such as VMRPC heap setup and VMRPC heap destroy
to create and destroy user defined shared heaps.

C. Control Channel

Since in VMM the client and server reside in the same
hardware (although located in different VMs), it is needless
to wrap and express the data in complicated ways.

Control page: Control page serves as the message ex-
change media. When initializing, VMRPC stores the informa-
tion about the stack size, heap size and start addresses of stack
and heap in it. When the client starts a RPC operation, two
types of control information are stored in control page: call
index number and ESP value. Call index number is used by the
server to find the right servant function in RPC dispatch table.
ESP value indicates the stack frame of the current function,
since the client’s main stack is already mapped to server’s
address space. Return value is also stored in control page by
the server.

RPC stack: In VMRPC, both the server and client have
at least two stacks. The first are their normal execution
stacks which we call ‘Server Main Stack’ (SMS) and ‘Client
Main Stack’ (CMS) respectively. When initializing a RPC
operation, the client stores CMS information in the control
page, allowing the server to map the corresponding memory
region to its own address space. Thus the client main stack
becomes shared between the server and client, we call it ‘RPC
stack’. A temporary stack is also set up in the client during
the initialization stage. The usage about this stack is described
below.

For each RPC, the client first stores the call index on the
top of the current stack into the control page, and switches to
the temporary stack and notifies the server. In turn the server
switches from the current SMS to the RPC stack according to
the value stored in the control page. When the task finishes,
the server switches back to the SMS and writes return value

to the control page. Then the client alters the RPC stack with
the correct return address by looking for the temporary stack,
takes the returned value from the control page and makes this
modified RPC stack as the execution stack. By now, a complete
two-way RPC operation has been accomplished.

Return address reservation: The control flow information
of the client must be carefully reserved and restored because
it may be modified during the process of stack sharing. For
example, the return address in RPC stack will be overwritten
when the callee function is performed on the server side. Thus
the client must be able to store the original return address and
change the corresponding stack value when the control flow
is switched back.

Security issue: Being able to access the stack means the
server or client may be able to alter the control flow of the
other party, malicious intentions would lead to system crash or
exposure of sensitive information. In VMRPC we assume the
server is trusted but the client is not. When guestOS launches a
RPC operation, the shared stack becomes read-only to guestOS
until the server transfers control back to the client. The server
will verify the correctness of the return address in stack and
clear all sensitive information to guarantee the security of stack
sharing. Thus the client has no ability to change the control
flow of the server or spy on the data flow of the server.

D. Notification Channel

There are two main reasons that we implemented the
notification channel in VMRPC. First, in order to protect the
shared stack and heap from concurrent accesses that could
produce non-deterministic behavior, we need some kind of
synchronization mechanism. Second, the RPC communication
semantics requires a way to allow both parties to respond to a
remote call or a returned value. VMM-specific asynchronous
mechanisms such as the event channel in Xen and VMCI
datagram in VMWare, are essential for VMRPC to build the
notification channel.

V. VMRPC USER INTERFACE

VMRPC provides a simple and clear interface to users,
comprising only eight APIs, Table II illustrates a simplified
example in which the usage of most of VMRPC APIs is
demonstrated in a typical scenario. The server first cre-
ates a listening thread by calling VMRPC server. When
the client issues a VMRPC client call, they exchange nec-
essary information and build up the control channel and
event channel. Then, VMRPC server starts a standard ser-
vice loop. VMRPC heap setup is launched in the client to
create shared heaps, and it will later be closed by calling
VMRPC heap destroy. The user must use VMRPC malloc
and VMRPC free to allocate or release memory blocks from
the shared heap.

The most tricky APIs are macro VMRPC PROXY and
function VMRPC offset. VMRPC PROXY switches the stack,
puts control command and calling index in the control page
followed by some stack information, then triggers the notifi-
cation channel to inform the server. VMRPC server reads the

TABLE II
A SIMPLIFIED EXAMPLE USING VMRPC.

server.c
void func1(int i, str* s){

printf(“%d %s\n”,i,s);
}
void func2(str* s){

printf(“%s\n”,s);
}
vmrpc call VMRPC call list[] = {

&func1,
&func2,

}
VMRPC server();

client.c
void func1(int, str*);
void func2(str*);
VMRPC PROXY(func1);
VMRPC PROXY(func2);
VMRPC client();
HeapHandle hh=VMRPC heap setup(heap size);
char *str = VMRPC malloc(13);
strcpy(str, ”Hello,world!”);
func1(100, VMRPC offset(str));
func2(VMRPC offset(str));
VMRPC free(str);
VMRPC heap destroy(hh);

information stored in the control page, and switches to server’s
RPC service stack to run the locally-defined real function.
When finished, VMRPC server records the returned value
in the control page, and notifies the client. All the changes
are reflected in the RPC stack, shared heap and return value
(in control page). Thus after being properly manipulated by
VMRPC PROXY, a remote call is actually executed as a local
call.

For every RPC call that involves a reference that points to
somewhere in the shared stack or heap, VMRPC offset must
be invoked to compute the offset between the server and client
address space to avoid the inconsistence caused by memory
mapping. We perform this calculation in the client where it is
easier to obtain the offset information.

VI. EVALUATION

In this section we evaluate the performance of VMRPC by
comparing it with two traditional RPC systems (XMLRPC and
ICE) and an inter-domain communication optimization sys-
tem (Xenloop). Three basic performance indicators: latency,
throughput and CPU utilization are reported here.

A. Test Setup

Unless otherwise mentioned, all experiments were per-
formed on this machine: Core Duo 6550 2.6GHz CPU with
3GB of memory running Xen 3.1 or VMWare Workstation
6.0 for linux. The hostOS and guestOS in Xen/VMWare are
both Fedora 8 (Linux kernel 2.6.21). For each test, the server
resided in the Dom0 (or a host in VMWare), the client run in
the DomU (or a guest in VMWare). When testing Xenloop,
we recompiled the kernel of Fedora 8 and Xen to meet its
requirements (Linux kernel 2.6.18 and Xen 3.2).

B. Latency

We measured the cross-domain round-trip latency with a
null RPC (defined as an empty function without any arguments

TABLE III
THE RESULTS OF LATENCY TEST

VMRPC Socket ICE XMLRPC
XEN 15µs 40µs 66µs 320µs

VMWare 84µs 90µs 135µs 551µs

TABLE IV
THREE DATA TYPES FOR THROUGHPUT TEST.

Type Definition Volume(Bytes)
Byte seq char ByteSeq[LEN*10] LEN*10

Fixed seq

t y p e d e f s t r u c t {
i n t i ;
i n t j ;
double d ;

} Fixed
F ixed FixedSeq [LEN]

16*LEN

Variable seq

t y p e d e f s t r u c t {
char ∗ s ; / / ” h e l l o ”
double d ;

}Var
Var VarSeq [LEN]

18*LEN

and return value), which excludes the extra times taken to
complete specific computations and data transmissions. For
completeness, we also conducted performance measurement
about native socket interface by transferring one byte data from
the client to server.

As shown in Table III, the numbers indicate the latency in
milliseconds averaged across 100,000 null RPC operations. We
can find that ICE is a highly efficient RPC system that incurs
only a little overhead on top of native socket. But VMRPC
is much faster than all other options due to its inherent
mechanisms implemented. In contrast, the performance of
VMRPC in VMWare is poorer than in Xen, but still better
than socket and traditional RPCs.

C. Throughput

Simply put, any RPC system’s throughput can be calculated
as follows: throughput = actual payload per RPC

the execution time of aRPC . The actual
payload is the valid information that a servant function ac-
tually processes, not including the RPC control information,
communication protocol messages and extra bytes resulting
from serialization. We can easily obtain its value by defining
a function with a fixed length string as the argument. The
denominator is more complex than the numerator. LPRC [2]
analyzed seven aspects related to the RPC’s total execution
time, some of which are relatively stable, while others depend
on the characteristics of RPCs. For example, serialization
overhead is mainly affected by the size and complexity of
the actual payload, the transfer overhead depends on the data
volume after serialization.

VMRPC eliminates some kinds of overhead from traditional
RPC system, but it also introduces some additional overhead:
the pointer argument conversion in VMRPC offset, and the
heap management in VMRPC malloc and VMRPC free. To
discuss the efficiency of VMRPC in the worst case, in the
following tests, the overheads described above are all included
in VMRPC’s total cost.

Since RPC’s throughput is heavily dependent on the type of
data transmitted, we define three kinds of data with different
complexity: byte sequence, fixed-length structure sequence
and variable-length structure sequence, their definitions and
actual payloads are summarized in table IV.

The LEN in table IV represents the length of sequences
ranging from 100 to 10000000, so we can observe RPC’s
throughput for payloads ranging from 1KB to about 100MB.
We analyze RPC’s receive and send operation separately.
Figure 3 shows the reported throughput as a function of length
of sequence, as compared to that for ICE and XMLRPC.
The first three sub-figures depict the throughput of three RPC
systems in Xen. The latter three is for VMWare.

The gradual increase of the throughput as the message
size increases indicates that the performance is dominated
by the per-message call overhead at small message sizes.
As we expect, it is obvious that the throughput of VMPRC
outperforms other RPC systems significantly. As shown in
Figure 3 (a) (d), VMRPC achieves at least up to 10 times
the throughput of ICE and XMLRPC in the peak case (the
sequence length reaches 10000). The relative discrepancy
between VMRPC and ICE/XMLRPC is widening with the
increasing complexity of the message, although the absolute
value of VMRPC throughput decreases (comparing (a) with
(c), and (d) with (f)).

When the message size increases, the performance becomes
dominated by the overhead of actually transferring the data.
ICE and XMLRPC decrease rapidly due to the serialization,
coping, transmission and context switch overhead. In VMRPC,
the memory allocation, pointer address conversion and mem-
ory copy costs also lead to the decline. A strange phenomenon
is that VMRPC (VMWare) sees a large dropoff when workload
exceeds 1000000, while VMRPC (Xen) keeps stable on the
same load. With further investigations we found that when
writing more than 50M bytes data to the shared memory,
VMCI’s performance is lower than Xen, resulting in higher
overhead. We attribute this to the same reason that causes the
deficiency of memory mapping.

It is easy to find that ‘VMRPC recv’ performs better than
‘VMRPC send’ because of a reduction in data replication
operations. On the contrary, ‘ICE recv’ is worse than ‘ICE
send’ due to an extra copy. At last, we notice the curves
of ByteSeq and FixedSeq of VMRPC have a similar shape,
because the data of both types is intrinsically contained in a
continuous region of virtual address space, resulting in less
memory allocations and copy operations. The data of type
VarSeq is usually composed by a large number of small and
discrete memory blocks, which increases the frequency of
allocating and copying operations. As a result, the turning
point of curves of type VarSeq comes earlier than the other
two types of data.

D. CPU Utilization

We used oprofile [18] to measure the relative CPU con-
sumption for data serialization and deserialization. The same
sequences of three structures in the preceding section are also

TABLE V
THE RESULTS OF CPU UTILIZATION TEST.

Byte
send

Byte
recv

Fix
send

Fix
recv

Var
send

Var
recv

VMRPC 170 116 218 132 19784 13401
ICE 419 720 203462 231238 219831 318779

XMLRPC 59037 131109 1232753 6127841 1116041 4869226

TABLE VI
HEAP SETUP OVERHEAD.

µs 1KB 10KB 100KB 1MB 10MB 100MB
Xenaccess 109 233 1554 34606 166631 1450916

VMCI 1089 1159 1612 11932 113412 22420105

used in this evaluation. Table V presents the results of sending
1,000 sequences containing 10,000 structures from client to
server.

As shown in Table V, XMLRPC is much more CPU
intensive than ICE and VMRPC, and it costs even one hundred
times more CPU cycles in some cases. For ICE compared
with VMRPC, it is about a factor of ten. Also note that recv
in XMLRPC uses around four times as many CPU cycles as
send. We attribute this to the process of decoding large XML
data sources arriving over the wire.

E. Heap setup overhead

Table VI shows the time spent on mapping shared regions
with varied size in Xen and VMWare. Although the setup
overhead for large heap is not ignorable in cases where the
heap size is larger (in the VMCI case, we need approximately
22 seconds to set up a 100M heap), we regard this as the
initialization overhead. And it will not have any negative
impacts on system performance at runtime.

F. VMRPC vs Xenloop

Having discussed the design, implementation and evaluation
of VMRPC, one may question that if the performance of
VMPRC is superior to a traditional RPC system enhanced
by an inter-domain communication optimization system. In
order to show the comparative advantage gained by VMRPC
over the inter-domain communication optimization systems,
we compare VMRPC with Xenloop [23] due to its desired
features such as simplicity, transparency and high perfor-
mance. Unfortunately, VMRPC’s current implementation does
not support communication between DomUs in Xen, while
Xenloop only offers communication optimization between two
co-located DomUs. Thus we have to analyze the relative
speedup of throughput in their respective testing environments:
the throughputs of ICE between DomUs are presented in the
second column of TableVII, we fill third column with the
improved throughput of ICE with Xenloop, and the speedup
rate is shown in the fourth column. As a comparison, we run
ICE and VMRPC tests between Dom0 and DomU, the seventh
column reflects the acceleration ratio of VMRPC versus ICE.
Based on the results, we can see the speedup from VMRPC is
far higher than those of Xenloop. In addition, the advantage of
VMRPC becomes clearer as the complexity of payload grows.

10 100 1000 10000 100000 1000000
0

100
200
300
400
500
600
700
800
900

1000
1100
1200
1300
1400
1500
1600
1700
1800
1900
2000

Th
ro

ug
hp

ut
 o

f
B

yt
eS

eq
 (M

B
yt

es
)

 VMRPC send
 VMRPC recv
 ICE send
 ICE recv
 XMLRPC send
 XMLRPC recv

(a) Xen ByteSeq throughtput

10 100 1000 10000 100000 1000000
0

100
200
300
400
500
600
700
800
900

1000
1100
1200
1300
1400
1500
1600
1700
1800
1900
2000

 VMRPC send
 VMRPC recv
 ICE send
 ICE recv
 XMLRPC send
 XMLRPC recv

Th
ro

ug
hp

ut
 o

f
Fi

xe
dS

eq
 (M

B
yt

es
)

(b) Xen FixedSeq throughtput

10 100 1000 10000 100000 1000000
0

100
200
300
400
500
600
700
800
900

1000
1100
1200
1300
1400
1500
1600
1700
1800
1900
2000

 VMRPC send
 VMRPC recv
 ICE send
 ICE recv
 XMLRPC send
 XMLRPC recv

Th
ro

ug
hp

ut
 o

f
V

ar
S

eq
 (M

B
yt

es
)

(c) Xen VarSeq throughtput

10 100 1000 10000 100000 1000000
0

100

200

300

400

500

600

700

800

900

1000

1100

1200

1300

1400

1500

Th
ro

ug
hp

ut
 o

f
B

yt
eS

eq
 (M

B
yt

es
)

 VMRPC send
 VMRPC recv
 ICE send
 ICE recv
 XMLRPC send
 XMLRPC recv

(d) VMWare ByteSeq throughtput

10 100 1000 10000 100000 1000000
0

100

200

300

400

500

600

700

800

900

1000

1100

1200

1300

1400

1500

Th
ro

ug
hp

ut
 o

f
Fi

xe
dS

eq
 (M

B
yt

es
)

 VMRPC send
 VMRPC recv
 ICE send
 ICE recv
 XMLRPC send
 XMLRPC recv

(e) VMWare FixedSeq throughtput

10 100 1000 10000 100000 1000000
0

100

200

300

400

500

600

700

800

900

1000

1100

1200

1300

1400

1500

Th
ro

ug
hp

ut
 o

f
V

ar
S

eq
 (M

B
yt

es
)

 VMRPC send
 VMRPC recv
 ICE send
 ICE recv
 XMLRPC send
 XMLRPC recv

(f) VMWare VarSeq throughtput

Fig. 3. The results of throughtput test.

TABLE VII
THE THROUGHPUT COMPARISON BETWEEN XENLOOP AND VMRPC.

Mbps ICE
DomU

ICE
DomU

Xenloop

Xenloop
Relative
Speedup

ICE
Dom0

VMRPC
Dom0

VMRPC
Relative
Speedup

Byte send 1541 1923 124% 2474 7792 315%
Byte recv 818 846 103% 728 15216 2090%
Fix send 391 401 102% 404 7456 1845%
Fix recv 291 292 100% 270 14912 5523%
Var send 67 66 98% 67 4800 7164%
Var recv 57 57 100% 57 7008 12294%

VMRPC performs surprisingly about 122 times better than
ICE in case of ’Var recv’ as shown in the last row of TableVII.

G. Case Study: vCUDA

vCUDA is a GPGPU high performance computing solution
for virtual machines. vCUDA allows applications executing
within virtual machines (VMs) to leverage hardware acceler-
ation, which can be beneficial to the performance of a class
of high performance computing (HPC) applications. vCUDA
works by hijacking CUDA dynamic libraries in user level to
redirect CUDA APIs to a remote server residing in Dom0,
which fulfills real computational tasks in GPU. The XMLRPC
was used to implement this redirection. In our former work
[20], we used some CUDA SDK samples to validate the fea-
sibility of the vCUDA architecture, but the poor performance
of XMLRPC has enormous negative impact on the overall
system performance. By applying VMRPC to vCUDA project,
we expect a decent improvement in performance.

Table VIII shows the statistical characteristics of the bench-
marks, such as the quantity of API calls, the device memory
size they consume and the data volume transferred from or
to GPU device. The benchmarks range from simple data

TABLE VIII
STATISTICS OF BENCHMARK APPLICATIONS.

API calls GPU RAM Data Volume
AlignedTypes (AT) 1990 94.00MB 611.00MB

BinomialOptions (BO) 31 0.01MB 0.01MB
BlackScholes (BS) 5143 61.03MB 76.29MB

ConvolutionSeparable (CS) 48 108.00MB 72.00MB
FastWalshTransform (FWT) 144 128.00MB 128.00MB

MersenneTwister (MT) 24 91.56MB 91.56MB
MonteCarlo (MC) 53 187.13MB 0.00MB

ScanLargeArray (SLA) 6890 7.64MB 11.44MB

management to more complex Walsh-Transform computation
and MonteCarlo simulation.

Figure 4 exhibits the performance comparison between new
vCUDA (with VMRPC) and old vCUDA (with XMLRPC) in
Xen. As shown in Figure 4, the performance boosting for the
benchmarks (such as AT, FWT, and MT) that involve large data
transfer is more obvious than those that transmit less data. This
is mainly due to the local RPC and shared memory optimiza-
tions. The VMRPC enhanced vCUDA system is competitive
to the native execution in most cases. From the figure, we can
see that the low latency characteristic of VMRPC also helps
improve the performance. For example, the SLA benchmark
involves little data flow, but it gains reasonable performance
improvement in spite of the 6890 RPC calls.

VII. RELATED WORK

We present related work by organizing the literature into
local RPC optimization and inter-domain communication op-
timization.

LRPC [2] addressed how local RPC can be implemented
with minimal overhead. It emulates the native local procedure

22
.9

1

6.
87

2

5.
41

1.
63

4.
38

4.
07

1.
19

1.
36

24
.4

86

6.
98

5

5.
42

1

1.
91

8

4.
89

2

4.
87

1

1.
20

9

1.
52

3

85
.4

2

6.
88 9.

39

5.
29

20
.9

4

21
.4

8

1.
60 4.

06

0

10

20

30

40

50

60

70

80

90

AT BO BS CS FWT MT MC SLA

native

vCUDA(VMRPC)

vCUDA(XMLRPC)

C
o

m
p

u
ta

ti
o

n
a

l
Ti
m
e

(s
e

c)

Fig. 4. vCUDA performance results with XMLRPC, VMRPC and native
execution.

call model, and no extra message-passing but the original
procedure-call convention is needed. By using client’s thread
to execute the requested service in server’s address space,
LRPC sets up a simple control transfer model. [7] extended
LRPC to Mach3 operation system, and also changed the
language call convention from Modula2+ to C. URPC [3] is
very similar to VMRPC in some aspects such as OS-bypass, it
optimizes the RPC by moving the communication facilities out
of the kernel and supporting them at the user level within each
address space. Nevertheless URPC is still an intra-OS RPC,
more precisely, an IPC tool. SHRIMP RPC [5] actually is
another version of URPC in a distributed memory architecture.

XenSocket [27] is a one-way communication channel be-
tween two VMs based on shared memory. It defines a new
socket type, with associated connection establishment and
read-write system calls that provide the interface to developer
by leveraging the underlying inter-VM shared memory mecha-
nism. IVC [12] is an user level communication library intended
for message passing HPC applications. It provides a socket-
style API. Xway [14] intercepts TCP/IP stack beneath the
socket layer, and provides transparent inter-domain communi-
cation with extensive modifications to network protocol stack
in the operating system. Xenloop [23] is a fully transparent
inter-domain network channel, which exploits the netfilter
hooks in Linux to intercept outgoing network packets and
shepherds the packets destined to co-resident VMs through a
inter-domain shared memory channel. One main drawback of
Xenloop is that it does not support the communication between
Dom0 and DomU. Fido [8] is a high performance inter-domain
communication mechanism tailored for enterprise appliances.
Fido is perhaps the closest equivalent to VMRPC based on
the techniques implemented in these two systems, but it is not
designed specifically as a RPC system.

VIII. CONCLUSIONS AND FUTURE WORK

In this paper, we have described the design, implementation
and performance evaluation of VMRPC. VMRPC sacrifices
transparency for extremely efficient communication, and pro-
vides fast responsiveness and high throughput when deployed
for collaborative components in virtualization environments.
It is specifically designed for applications where high volume

data transmission between VMs is desired. Our evaluation
shows that the performance of VMRPC is an order of
magnitude better than traditional RPC systems and existing
alternative inter-domain communication mechanisms. As our
future work, we plan to develop new features such as dynamic
heap management, non-blocking RPC, and add support for
communication between domUs.

Acknowledgments We thank the anonymous reviewers for
their helpful feedback. This research was supported in part by
the National Basic Research Program of China under grant
2007CB310900, the National Science Foundation of China
under grants 60803130 and 60703096, and the Fundamental
Research Funds for the Central Universities of China.

REFERENCES

[1] P. Barham, B. Dragovic, K. Fraser, and S. Hand. ”Xen and the art of virtualization”.
In Proc. ACM Symposium on Operating Systems Principles (SOSP), Oct. 2003.

[2] B. Bershad, T. Anderson, E. Lazowska, and H. Levy. ”Lightweight remote procedure
call”. ACM Transactions on Computer Systems (TOCS), v.8 n.1, p.37-55, Feb. 1990.

[3] B. Bershad, T. Anderson, E Lazowska, and H. Levy. ”User-level interprocess com-
munication for shared memory multiprocessors”. ACM Transactions on Computer
Systems (TOCS), v.9 n.2, p.175-198, May 1991.

[4] B. Bershad, R. Draves, and A. Forin. ”Using Microbenchmarks to Evaluate System
Performance.” Third Workshop on Workstation Operating Systems, April 1992.

[5] A. Bilas and E. Felten. ”Fast RPC on the SHRIMP Virtual Memory Mapped
Network Interface”. Journal of Parallel and Distributed Computing. 40(1) pp.138-
146, 1997.

[6] M. Blumrich, K. Li, R. Alpert, C. Dubnicki, E. Felten, and J. Sandberg. ”Virtual
Memory Mapped Network Interface for the SHRIMP Multicomputer”. In Proc. 21st
Annual International Symposium on Computer Architecture (ISCA), Chicago, pp.
142-153, April 1994.

[7] V. Bourassa and J. Zahorjan. ”Implementing lightweight remote procedure calls
in the Mach 3 operation system”. Technical Report TR-95-02-01, University of
Washington, Department of Computer Science and Engineering, Feb 1995.

[8] A. Burtsev, K. Srinivasan, P. Radhakrishnan, L. N. Bairavasundaram, K. Voruganti,
and G. R. Goodson. ”Fido: Fast Inter-Virtual-Machine Communication for Enter-
prise Appliances”. In Proc. USENIX, June 2009.

[9] Cisco Systems. http://www.cisco.com/products.
[10] T. Garnkel and M. Rosenblum. ”A virtual machine introspection based architecture

for intrusion detection”. In Proc. the Network and Distributed Systems Security
Symposium, February 2003.

[11] M. Henning. ”A new approach to object-oriented middleware”. IEEE Internet
Computing 8 (2004), pp. 66-75.

[12] W. Huang, M. Koop, Q. Gao, and D. K. Panda. ”Virtual machine aware communi-
cation libraries for high performance computing”. In Proc. SuperComputing, Reno,
NV, Nov. 2007.

[13] A. Joshi, S. King, G. Dunlap, and P. Chen. ”Detecting past and present intrusions
through vulnerability-specific predicates”. In Proc. ACM Symposium on Operating
Systems Principles (SOSP), pages 1-15, Oct 2005.

[14] K. Kim, C. Kim, S. I. Jung, H. Shin, and J. S. Kim. ”Inter-domain Socket
Communications Supporting High Performance and Full Binary Compatibility on
Xen”. In Proc. VEE, ACM Press, 2008.

[15] H. A. Lagar-Cavilla, N. Tolia, M. Satyanarayanan, and E. de La-ra. ”VMM-
independent Graphics Acceleration”. In Proc. VEE 2007. ACM Press, June 2007.

[16] M. Laureano, C. Maziero, and E. Jamnhour. ”Intrusion detection in virtual machine
environments”. In Proc. 30th EUROMICRO, pp.520-525, 2004.

[17] NetApp Storage Systems. http://www.netapp.com/products. .
[18] OProfile. http://oprofile.sourceforge.net/news/
[19] M. Schroeder and M. Burrows. ”Performance of Firefly RPC”. In Proc. 12th ACM

symposium on Operating systems principles, pp.83-90, November 1989.
[20] L. Shi, H. Chen, and J. Sun. ”vCUDA: GPU Accelerated High Performance

Computing in Virtual Machines”. IEEE International Parallel and Distributed
Processing Symposium (IPDPS), Rome, Italy, May, 2009.

[21] VMCI. http://pubs.vmware.com/vmci-sdk/index.html.
[22] VMWare. http://www.vmware.com.
[23] J. Wang, K. Wright, and K. Gopalan. ”XenLoop: A Transparent High Performance

Inter-VM Network Loopback”. In Proc. 17th international symposium on High
performance distributed computing, Boston(HPDC), MA, USA, June 2008.

[24] XenAccess. http://xenaccess.sourceforge.net.
[25] XMLRPC. http://www.xmlrpc.com.
[26] C. Yarvin, R. Bukowski, and T. Anderson. ”Anonymous RPC: Low Latency

Protection in a 64-Bit Address Space”. In Proc. USENIX, June 1993.
[27] X. Zhang, S. McIntosh, P. Rohatgi, and J. L. Griffin. ”Xensocket: A high-throughput

interdomain transport for virtual machines”. In Proc. Middleware, 2007.

