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Abstract

This paper describes vCUDA, a GPGPU (General Pur-
pose Graphics Processing Unit) computing solution for
virtual machines. vCUDA allows applications executing
within virtual machines (VMs) to leverage hardware accel-
eration, which can be beneficial to the performance of a
class of high performance computing (HPC) applications.
The key idea in our design is: API call interception and
redirection. With API interception and redirection, appli-
cations in VMs can access graphics hardware device and
achieve high performance computing in a transparent way.
We carry out detailed analysis on the performance and
overhead of our framework. Our evaluation shows that
GPU acceleration for HPC applications in VMs is feasi-
ble and competitive with those running in a native, non-
virtualized environment. Furthermore, our evaluation also
identifies the main cause of overhead in our current frame-
work, and we give some suggestions for future improvement.

1. Introduction

Recently, system level virtualization technology revivals
again, which stems from the continued growth in hardware
performance and increased demand for service consolida-
tion from business markets. Virtual machine (VM) tech-
nologies allow different guest VMs coexisting in a physical
machine under the management of a virtual machine mon-
itor (VMM). VMM technology has been applied to many
areas including intrusion detection [8], high performance
computing [12] and device driver reuse [21] et al.

Over the past few years, there has been a marked in-
crease in the performance and capabilities of graphics pro-
cessing unit (GPU). The modern GPU is not only a power-
ful graphics engine but also a highly parallel programmable
processor featuring peak arithmetic and memory bandwidth
[10, 28, 29]. Research community has successfully mapped
a broad range of computationally demanding and complex

problems to GPU. The introduction of some vendor specific
technologies (such as NVIDIA’s CUDA [7]) are further ac-
celerating the adoption of high performance parallel com-
puting to commodity computers.

Although virtualization technologies provide a wide
range of benefits such as system security, ease of manage-
ment, isolation and live migration, VM technologies have
not been widely adopted in high performance computing
area. This is mainly due to the overhead incurred by indi-
rect access to physical resources such as CPU, IO devices
and physical memory, which is one of the fundamental char-
acteristics of virtual machines.

In this paper, we propose a framework vCUDA for HPC
which uses hardware acceleration provided by GPUs to ad-
dress the performance issues associated with VMs. Due to
the closure and diversity, the powerful graphic processing
ability can not be directly used by application running in
virtualization platforms. To achieve hardware acceleration
non-invasively for general purpose computing applications
in VMs, we propose a solution by intercepting CUDA API
calls, which intercepts and redirects CUDA commands and
data in VMs to a CUDA enabled graphics device, and does
the real computations by the vendor-supplied GPU driver
and CUDA library in VMM. With detailed performance
evaluations, we demonstrate that hardware accelerated high
performance computing jobs can run as efficiently in vir-
tualized environment as in a native host. Although we fo-
cus on CUDA and Xen, we believe that our framework can
be readily extended for other vendor specific GPGPU solu-
tions and other VMMs. To the best of our knowledge, this
is the first study to adopt GPU accelerated HPC in virtual
machines.

In summary, the main contributions of our work are:

• We propose a framework which allows high perfor-
mance computing applications to benefit from hard-
ware acceleration in virtual machines. To demonstrate
the framework, we have developed a prototype system
using Xen virtual machine and CUDA.



• we present a set of extensions built with this frame-
work such as multiplexing, suspend and resume with-
out any modifications to applications.

• We carry out detailed performance evaluation on the
overhead of our framework. This evaluation shows
that the vCUDA framework is practical and can de-
liver high performance for HPC applications as those
in native environments.

The rest of the paper is organized as follows: In Sec-
tion 2, we provide some necessary background about this
work. Then, we present our framework for hardware ac-
celerated high performance computing in VMs in Section 3
and carry out detailed performance analysis in Section 4.
In Section 5, we discuss several issues in our current im-
plementation and how they can be addressed in future. we
discuss the related work in Section 6 and conclude the paper
in Section 7.

2. Background

2.1. VMM and GPU Virtualization

System level virtualization technologies simulate details
of the underlying hardware in software, provide different
hardware abstraction for each operating system instance,
and run multiple heterogeneous operating systems concur-
rently. It decouples the software from the hardware by
forming a level of indirection which traditionally known as
the VMM. There are some different forms of VMM, but
they all provide a complete and consistent view of underly-
ing hardware to the VM running on it.

The VMM provides total mediation of all interactions
between the virtual machine and underlying hardware, thus
allowing strong isolation between virtual machines and sup-
porting the multiplexing of many virtual machines on a sin-
gle hardware platform. VMM layer can also map and remap
virtual machines to available hardware resources at will and
even migrate virtual machines across machines. Encapsu-
lation also means that administrators can suspend virtual
machines and resume them at arbitrary times or checkpoint
them and roll them back to a previous execution state. With
this general-purpose undo capability, systems can easily re-
cover from crashes or configuration errors.

In the field of commercial software, Vmware [31] has
become the de facto industry standard, and in the field of
open-source software, Xen [2, 3] leads the emergence of
paravirtualize technology. Both Xen and Vmware devel-
oped the hosted architecture. In this architecture, the vir-
tualization layer uses the device drivers of a host operating
system such as Windows or Linux to access devices.

While virtualization technology has been successfully
applied to a variety of devices, it is difficult to virtualize

the GPU in VMM, one main reason is lacking standard
interface in hardware level. One possibility is to redirect
graphics processing requests from guestOS to hostOS us-
ing software emulation. However, this is not practical for
modem graphics hardware because trapping requests at this
level is generally too inefficient. Another choice is to in-
tercept the graphics protocol stream at a higher (device-
independent) point in the stream and redirect that to hostOS.
The approach might be to replace system dynamic link li-
braries containing APIs with protocol stubs to redirect to
the guestOS, though there are still significant issues with
this approach when the methods for managing state in the
original APIs have not been designed with this approach in
mind.

In the rest of this paper, the term hostOS refers to the ad-
ministrative OS (or domain0 according to Xen’s semantics).
The term guestOS refers to a VM (or domainU in Xen).

2.2. CUDA

CUDA (Compute Unified Device Architecture) [7] is a
complete GPGPU solution that provides direct access to
the hardware interface, rather than the traditional approach
that must rely on the graphical interface API. The CUDA
framework uses common C language as its programming
language and provides a large number of high performance
computing instructions and development capabilities, so
that developers can establish more efficient data-intensive
computing solutions on the basis of powerful GPU acceler-
ation ability.

The CUDA software stack is composed of three layers:
a hardware driver, an application programming interface
(API) and its runtime, and two higher-level mathematical
libraries of common usage. The runtime library is split into
three parts: A host component that runs on the host and pro-
vides functions to control and access one or more compute
devices from the host; A device component that runs on
the device and provides device-specific functions; A com-
mon component that provides built-in vector types and a
subset of the C standard library that are supported in both
host and device code. For host runtime component, it is
composed of two APIs: A low-level API called the CUDA
driver API, and A higher-level API called the CUDA run-
time API, which is implemented on top of the CUDA driver
API. A important fact is they are mutually exclusive which
means one application can only use one of them. NVCC is
a compiler for CUDA, it simplifies the process of compil-
ing CUDA code. Its basic work-flow consists in separating
device code from host code and compiling the device code
into a binary form or cubin object.

For the programmer the CUDA execution model as
shown in Figure 1 is a collection of threads running in par-
allel. The programmer decides the number of threads to
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Figure 1. The CUDA execution model: A num-
ber of threads are batched together in blocks,
which are again batched together in a grid.

be executed. A collection of threads (called a block) runs
on a multiprocessor at a given time. Multiple blocks can
be assigned to a single multiprocessor and their execution
is time-shared. A single execution on a device generates
a number of blocks. A collection of all blocks in a sin-
gle execution is called a grid. All threads of all blocks
executing on a single multi-processor divide its resources
equally amongst themselves. Each thread and block is given
a unique ID that can be accessed within the thread during
its execution. Each thread executes a single instruction set
called the kernel. The kernel is the core code to be exe-
cuted on each thread. Using the thread and block IDs each
thread can perform the kernel task on different set of data.
Since the device memory is available to all the threads, it
can access any memory location.

3. vCUDA

vCUDA framework is organized around two main archi-
tectural features:

• Virtualization of CUDA API. 31 APIs in total 56 run-
time APIs were encapsulated into RPC calls. Their pa-
rameters were properly queued and redirected to hos-
tOS, and variables was cached and kept persistence in
both server and client side. Through this kind of virtu-
alization, the graphics hardware interface was decou-

pled from software layer.

• Lazy RPC Transmission. vCUDA used XML-RPC
[32] as the means of high-level communication be-
tween guestOS and hostOS, taking into account its
compatibility and portability. XML-RPC is well-
supported by a number of third-party libraries that pro-
vide language-agnostic ways of invoking RPC calls. In
addition, we adopted a lazy RPC mode to improve ef-
ficiency of the original XML-RPC.

In addition, CUDA currently is not a fully open API,
some internal details have not been documented in official
software development kit SDK). we do not have full knowl-
edge about the states maintained only by the underlying
hardware driver or shared between applications and hard-
ware. We achieve the virtualization functionality from the
following three aspects:

• Function parameters. The intercepting library has no
access to all the internals of an application linked with
it. But it can get all the parameters of corresponding
API calls, which can be used as inputs to the faked API
calls defined in the intercepting library. These faked
API calls with proper parameters can then be sent to
remote server for execution as normal calls.

• Ordering semantics. Ordering semantics are the set
of rules that constrain the order in which API calls may
be executed. CUDA is basically a strictly ordered in-
terface, which means some APIs must be launched in
the order in which they are specified. This behavior is
essential for maintaining internal persistency. But in
some cases, if possible, vCUDA would use less con-
strained ordering semantics when it meant increased
performance.

• Device state. CUDA maintains a large amount of
states in hardware. The states contain attributes such
as device point, symbol, pitch, texture and so on. On
a workstation with hardware acceleration, the graph-
ics hardware keeps track of most or all of the current
state. However, in order to properly implement a re-
mote execution for these APIs in virtual machine, it is
necessary for the client to keep track of some of the
state in software.

3.1. System Architecture

vCUDA uses a robust client-server model, which con-
sists of three user space modules: the vCUDA library, vir-
tual GPU in client and the vCUDA stub in server. Figure 2
shows the vCUDA architecture. In the rest of this paper, the
term server memory refers to the hostOS memory space,
the term client memory refers to the VM memory space,
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Figure 2. The vCUDA architecture.

and device memory refers to the memory space in graphics
hardware reside in hostOS.

3.1.1. vCUDA Library

vCUDA library resides in guestOS as a substitute of stan-
dard CUDA runtime library, and it is responsible for inter-
cepting and redirecting API calls from client to stub. There
are two programming interface provided by CUDA, runtime
API and driver API. We chose the runtime API as the target
of virtualization because it is the most widely used library
in practice and also the officially recommended interface
for programmers. However we don’t anticipate any main
obstacle to virtualize the driver level API.

There are total 56 runtime APIs described in the offi-
cial programming guide. But we also found other 6 inter-
nal APIs in the dynamic linking library of CUDA runtime,
and they are not visible to programmers. It seems that they
are used to manage device execution code and memory al-
located to variables. These six internal APIs are compiled
by NVCC into the final executable file, and never interact
with other APIs. They were called before the choice of de-
vice therefore have nothing to do with specific GPU. For the
six APIs, we just wrapped the corresponding parameter and
sent it to the stub. We do not assume any internal logic to
these functions because they might be changed in the future.

We use NVCC generated intermediate code, combined
with control flow analysis to customize the virtual logic for
each API. For each API we intercept in the faked library, all
API calls are packed into a global API queue. This queue
contains a copy of the arguments to the corresponding func-
tion as well as an opcode, which is encoded into a single
byte. The contents in this queue were pushed to the stub
periodically according to some pre-defined strategies (Sec-

tion 3.2). In the current stage, we do not support the virtual-
ization of 3D graphics APIs, which requires a large amount
of engineering effort. Thus the discussion about these APIs
is beyond the scope of this paper (Section 5).

3.1.2. vGPU

vGPU is created, identified and used by vCUDA library,
and in fact it is represented as a large data structure in mem-
ory maintained by vCUDA library. vGPU provides three
main functionalities. First, vGPU abstracts some features
of real GPU to give each application a complete view of
the underlying hardware. vCUDA library creates a vir-
tual GPU context for each application, which contains de-
vice attributes such as GPU memory usage, texture memory
properties. Another important role of vGPU is local device
memory management. When a CUDA application allocates
a device memory, vGPU will return a local virtual address
to the application and notify remote stub to allocate the real
device memory. vGPU is also responsible for maintaining
the mappings of local and remote addresses to avoid un-
necessary memory copies and leaks. The third function of
vGPU is to store the CUDA API flow, most of the APIs’ op-
codes and parameters are stored in a global queue in mem-
ory or a file in file system to support suspend/resume as
described in Section 3.4.

3.1.3. vCUDA Stub

vCUDA stub receives and interprets remote requests and
creates a corresponding execution context for the API calls
from guestOS, then returns the results to guestOS. The
vCUDA stub manages the actual physical resources such as
the allocation of hardware resources and threads, the match-
ing of parameters of API calls, and also keeps a consistent
view of states in both the stub and client sides by periodical
synchronization with vGPU.

The vCUDA stub spawns one thread for each client. The
main purpose of these threads is to receive CUDA com-
mands via the RPC channel, and to execute those com-
mands on behalf of the client application. Each stub thread
receives the vCUDA API stream, decodes it, and translates
it into a server-side representation. Then, for each client
that vCUDA library interprets, the stub thread sets up an
appropriate execution environment, and finally calls the na-
tive APIs. The process of this translation is crucial to the
coherent and success of our system.

3.2. Lazy RPC

Thousands of CUDA APIs could be involved in a CUDA
application. If vCUDA intercepts and redirects every API
call in client applications, then the same number of RPCs
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will be invoked and the overhead of world switch (exe-
cution context switch between different guest OSes) will
be inevitably introduced into the system. In virtual ma-
chines, world switch is an extremely expensive operation
and should be avoided whenever possible [23].

We classify the CUDA APIs into two categories. One is
called instant APIs, whose executions have immediate ef-
fect on the state of CUDA runtime system. The other cate-
gory is lazy APIs, which do not have any side effects on the
runtime state until the invocation of a following instant API.
This kind of classification allows vCUDA to reduce the fre-
quency of world switch by updating states in the stub lazily,
and decrease unnecessary RPCs by redirecting lazy APIs to
stub side in a batched manner, thus boosting the system’s
performance. A potential problem with lazy mode needs
mentioning is the delay of error report and time counting,
thus it is not suitable for debugging and measurement pur-
pose.

3.3. Multiplexing

One fundamental feature of VM technologies is de-
vice multiplexing. For example, in Xen, the physical net-
work card can be multiplexed among multiple concurrently
executing guest OSes. To enable this multiplexing, the
privileged driver domain (domain0) and the unprivileged
guest domains (domainU) communicate by means of a split
network-driver architecture. The driver domain hosts the
backend of the split network driver, and the domainU hosts
the frontend.

In vCUDA, we implement the GPU multiplexing in ap-
plication level through the cooperation of the vCUDA li-
brary in domainU and the stub in domain0, thus allowing
multiple CUDA applications to execute concurrently in the
same VM or different VMs. As described in Section 3.1.3,
the vCUDA stub spawns one thread for each client, and
there is an indicator (hash value of IP address, domain
ID and process ID) for each thread to distinguish differ-
ent clients from different VMs. Under the coordination of
vCUDA stub, these threads allocate and manage hardware
resources cooperatively to guarantee the correct execution
semantics of client applications.

There are three situations when we handle the mappings
of threads to GPU hardware. The first is one thread mapped
to a single hardware device. The second is multiple threads
running on a single device, and the last is that one thread
controls multiple GPU devices. According to the Nvidia’s
official guide, the third case is not supported by the cur-
rent GPU hardware. Although being not a officially recom-
mended operation, the second case was also implemented
in our framework and some performance evaluation will be
given in Section 4.2.

3.4. Suspend and Resume

vCUDA provides support for suspend and resume, en-
abling client sessions to be interrupted or moved between
computers [18]. Upon resume, vCUDA presents the same
device state that the application observed before suspending
while retaining hardware acceleration capabilities.

The basics to implement application suspend and resume
is to store the CUDA API calls which affect device states
and the coresponding states bound to these calls when nec-
essary. While the guest is running, vCUDA stub and vGPU
both snoop on the CUDA commands they forward to keep
track of the state of device. Upon resume, vCUDA spawns a
new thread in the stub, which is initialized by synchronizing
it with the application vCUDA state stored by vCUDA. The
time spent on resume depends on RPC efficiency, the GPU
computing time of specific application and world switch
overhead.

4. Experiments

While the previous sections have presented detailed tech-
nical descriptions of the vCUDA system, this section evalu-
ates the efficiency of vCUDA using programs selected from
official SDK examples: a set of general-purpose algorithms
from various domains. The benchmark range from simple
data management to more complex WalshTransform com-
putation and MonteCarlo simulation. Table 1 shows the
statistical characteristics of these benchmarks, such as the
quantity of API calls, the device memory size they consume
and the data volume transferred from or to GPU device.

These applications are evaluated concerning the follow-
ing criteria:

• Performance How close does vCUDA come to pro-
viding the performance observed in unvirtualized en-
vironment with GPU acceleration?

• Lazy RPC and Concurrency How greatly can
vCUDA reduce the frequency of network transmission
by Lazy RPC mechanism? How well does vCUDA
scale to support multiple CUDA applications running
concurrently?

• Suspend and Resume What is the latency for resum-
ing a suspended CUDA application? What is the size
of an application’s recorded CUDA state?

• Compatibility How compatible is vCUDA with a
wide range of applications besides the examples dis-
tributed with CUDA SDK?

The following testbed has been used for all bench-
marks: A personal computer equipped with one Intel Core
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Table 1. Statistics of Benchmark Applications.
Number of APIs GPU RAM Data Volume

AlignedTypes (AT) 1990 94.00MB 611.00MB
BinomialOptions (BO) 31 0.01MB 0.01MB

BlackScholes (BS) 5143 61.03MB 76.29MB
ConvolutionSeparable (CS) 48 108.00MB 72.00MB
FastWalshTransform (FWT) 144 128.00MB 128.00MB

MersenneTwister (MT) 24 91.56MB 91.56MB
MonteCarlo (MC) 53 187.13MB 0.00MB

ScanLargeArray (SLA) 6890 7.64MB 11.44MB

2 Duo E6550 processors running at 2.33 GHz with two
single-threaded cores and provided with 2 GBytes of mem-
ory. Furthermore, the graphics hardware was NVIDIA’s
GeForce8600 GT. As for software, the test machine ran the
RHEL 5.0 Linux distribution with the 2.6.16.29 kernel, with
the official NVIDIA driver for linux version 169.09. We
choose the XEN3.0.3 as our virtual platform, all paravirtu-
alized virtual machines were setup with 512 MB RAM, 5G
disk, and bridge mode network configuration.

4.1. Performance

Performance evaluation refers to the execution time of
benchmarks in virtual machine compared to the native ver-
sion. Our first test measures basic performance of vCUDA,
all benchmarks were evaluated in two different configura-
tions:

• Native: Every application has direct and exclusive ac-
cess to hardware and native CUDA drivers. vCUDA
was not used. This represents the upper bound on
achievable performance for our experimental setup.

• vCUDA: a virtualized guest using vCUDA to provide
hardware acceleration. All CUDA instructions were
intercepted and redirected to hostOS.

Figure 3 shows the results from running the benchmarks
under two configurations described above. The first two
bars shows the execution time with and without vCUDA,
the third bar represents the overhead caused by XML-RPC
encode/decode procedures.

The experiments result shows that the time consump-
tion with vCUDA is one to five times bigger than the
native version. But further observation will discover the
main cause that affects the efficiency is the encode/decode
time of XML-RPC implementation. Benchmark programm
AlignedType involves data transfer about 600MBytes,
whose encode/decode time took more than 60% of the to-
tal execution time. This indicates that the XML-RPC is not

Figure 3. vCUDA performance.

Figure 4. vCUDA performance - normalized
view.
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Figure 5. Effect of lazy RPC mode.

a efficient enough protocol for high-capacity data transmis-
sion. We are investigating a customized inter-domain com-
munication mechanism in virtual machine to improve the
efficiency. Other benchmarks that involve large data trans-
fer exhibit similar characteristics. On the other hand, the
less the data volume is transferred, the closer performance
is to the native version, such as benchmarks BO and MC.

Figure 4 normalizes the native and encode/decode re-
sults against the results obtained in VM (i.e. native and en-
code/decode time divided by vCUDA time). The purpose of
normalization is to compare the results more intuitively. For
example, although the execution time in vCUDA is not ex-
actly the sum of native and encode/decode time, we can in-
fer a coarse performance penalty of vCUDA. In the case of
benchmark AT, vCUDA itself incurred 8.92% (1-26.81%-
64.27%) overhead except for encode/decode time.

4.2. Lazy RPC and Concurrency

Figure 5 compares the RPC frequencies in two cases
leaving lazy mode open or close. As shown in Figure 5, the
lazy mode transmission significantly reduce the frequency
of RPC between two domains at the level of 40% to 70%.

To examine vCUDA’s ability to support concurrent ap-
plications, we compared the performance of two applica-
tions executing concurrently in an unvirtualized configura-
tion, to the performance of the same two applications exe-
cuting concurrently in vCUDA. We launched each bench-
mark concurrently with a reference application to test the
performance of concurrency in vCUDA. The benchmark
BO was chosen as a reference application, because it con-
sumed smaller device memory and can run concurrently
with most of other benchmarks. The only exception was
MC, which consumed too much memory in device RAM to
execute concurrently with BO.

Figure 6. Evaluation of scalability by running
two CUDA applications concurrently.

Figure 6 presents the results for the concurrent execution
of two applications, compared to the results for a single in-
stance (taken from Figure 3) in two circumstances. The
test results in unvirtualized configuration all present good
scalability, and the overheads for all applications are all be-
low 16% (3.8% for AT, 6.3% for BO, 7.5% for BS, 13.3%
for CS, 9.5% for FWT, 15.6% for MT and 1.4% for SLA).
In the contrary, the counterparts in vCUDA show obvious
performance degradation, the overhead ranging from 4% to
170% (4.9% for AT, 94.8% for BO, 49% for BS, 67.1% for
CS, 42.4% for FWT, 99.9% for MT and 167.7% for SLA).
We attribute this to the current unoptimized implementa-
tion of our system, such as the management of concurrent
accesses to GPU device of different stub threads and ineffi-
cient inter-domain data transfer that also incurs significant
overhead of world switch. Despite the performance issue,
the concurrency evaluation validates the GPU multiplexing
functionality described in Section 3.3.

4.3. Suspend and Resume

To measure the performance of vCUDA’s suspend and
resume, we suspended the benchmarks at the end of each
application’s API call flow in time. We then resumed the
guest and verified successful resumption of the CUDA ap-
plication. We measured the size of the CUDA state neces-
sary to synchronize the vCUDA stub to the current applica-
tion state, and the time it took to perform the entire resume
operation. The results of these experiments are shown in
Figure 8 and Figure 9.

Note that since unregistfatbinary is always the last API
called in CUDA applications, we put the suspending point
before the first occurrence of unregistfatbinary. That is
the worst situation because the maximum states need to be
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Figure 7. Size of suspended CUDA state.

Figure 8. Resume time.

synchronized, thus the experimental results represent an up-
per bound of performance.

Figure 7 illustrates the data volume need to be restored
for resumption. The resume time (Figure 8) is strongly
dependent on the size of the suspended CUDA state (Fig-
ure 7), which can be as large as 65MB for the FWT bench-
mark. The benchmarks AT, BS, CS and FWT took more
time to perform the resume operation than others due to
their larger data volumes. Furthermore, Figure 9 compares
the time consumption in three different circumstances (na-
tive, vCUDA and resume). The resume operation took
much less time than the execution in vCUDA in all bench-
marks, but took a little more time than the native execution
in benchmarks AT, BS, CS and FWT, which all involved
more data transfer. However, the resume time is almost neg-
ligible in benchmarks BO (0.65s) and MT (0.36s), where
the state size is much smaller (13KB for BO and 7KB for
MT).

Figure 9. Comparison of time consumption
among resume operation, native and virtual-
ized executions.

4.4. Compatibility

A well designed API interface virtualization scheme
should be not only transparent but also compatible to a
wide range of applications except for the examples in of-
ficial SDK. In order to verify the compatibility of vCUDA,
we chose five applications from CUDA zone [7] that can
run correctly in our testbed. These applications were mp3
lame encoder in CUDA contest [25], Molecular Dynamics
Simulation with GPU [22], matrix-vector multiplication al-
gorithm in CUDA [9], storeGPU [1] and MRRR implemen-
tation in CUDA [20].

All the five third party applications passed the test and
returned the same results as in native executions. The de-
tails of these tests are depicted in Table 2, which shows that
when running in vCUDA framework, these applications ex-
hibit similar performance characteristics as those discussed
in Section 4.1. For example, the performance degradation
of application MV is mainly due to the higher data volume
transfer compared with other applications.

5. Discussion

In this section we discuss several issues with our current
prototype and how they can be addressed in future.

vCUDA has not yet achieve virtualization of all APIs of
CUDA version 1.1. As visual computing is becoming very
popular and widespread and the virtualization of 3D graph-
ics interface such as OpenGL could be beneficial in prac-
tice, we are planing to integrate existing 3D virtualization
technology such as VMGL [19] into our framework.

Another aspect needs to improve is the efficiency of net-
work transmission. So far our work has focused on porta-
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Table 2. Statistics of the Third Party Applications.
Number of APIs GPU RAM Data Volume Native Time(s) vCUDA Time(s)

GPUmg 89 294KB 2448KB 0.242s 0.387s
storeGPU 32 983KB 860KB 0.301s 0.413s

MRRR 370 1893KB 2053KB 0.591s 0.686s
MV 31 15761KB 61472KB 0.776s 3.814s

MP3encode 94 1224KB 391KB 0.252s 0.515s

bility across VMMs and OSs, therefore avoided all per-
formance optimizations that might compromise portability.
The underlying data channels have not been fully utilized,
leading to relatively low efficiency. One of our goals in
future is to develop a specific communication strategy be-
tween different domains in Xen by adopting technologies
such as XWAY [17].

CUDA currently is only Nvidia’s private GPGPU inter-
face standard, which means vCUDA only supports Nvidia’s
graphics cards. Recently the industry has announced other
competitive frameworks such as [26] for the same purpose,
and we expect that methodologies discussed in our frame-
work can also be applied to other interfaces.

6. Related Work

Research community have adopted various methods to
expand and reuse API, a typical method is to replace the
graphic API library with an ”intercept” library that looks
exactly like the original graphic library.

According to the specific features and practical require-
ments, many existing systems intercept calls to the graph-
ics library for various purposes. VirtualGL [30] virtru-
alizes GLX to grant remote rendering ability. WireGL
[14] and its successor Chromium [13] intercept OpenGL
[27] to generate different output like distributed displays.
Chromium provides a mechanism for implementing plug-
in modules that alter the stream of GL commands, allow-
ing the distribute parallel rendering. HijackGL [24] uses
the Chromium library to exploring new rendering styles.
In VMM platform like Xen this methodology is used to
achieve 3D hardware acceleration in a virtual machine. [19]
deploys a fake stub in guestOS and redirect the OpenGL
flow to hostOS. Blink project [11] intercepts OpenGL to
multiplex 3D display in several ClientOS. Another main
category is the tools to help performance analysis and de-
bugging. IBM’s ZAPdb OpenGL debugger [15] uses this
interception technique to aid in debugging OpenGL pro-
grams. Intel’s Graphics Performance Toolkit [16] uses a
similar method to instrument graphics application perfor-
mance.

High level middleware- and language-based virtual ma-
chines have been studied and used for high performance

computing, such as HPVM [6] and Java. In [12], the authors
proposed a framework for HPC applications in VMs, which
addresses the performance and management overhead asso-
ciated with VM-based computing. They explained how to
achieve high communication performance for VMs by ex-
ploiting the VMM-bypass feature of modern high speed in-
terconnects such as InfiniBand, and reduce the overhead of
distributing and managing VMs in large scale clusters with
scalable VM image management schemes.

7. Conclusions

In this paper we proposed a framework vCUDA, a
GPGPU high performance computing solution for virtual
machines. vCUDA allows applications executing within
virtual machines (VMs) to leverage hardware acceleration,
which can be beneficial to the performance of a class of
high performance computing (HPC) applications. We ex-
plained how to access graphics hardware in VMs transpar-
ently by API call interception and redirection. Our evalu-
ation showed that GPU acceleration for HPC applications
in VMs is feasible and competitive with those running in a
native, non-virtualized environment. In future, we will add
3D graphics virtualization to our framework and port it to
newer versions of CUDA. We plan to investigate high per-
formance inter-domain communication schemes to improve
the efficiency of data transfer in our system.
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