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Abstract

DNN training consumes orders of magnitude more energy
than inference and requires innovative use of accelerators
to improve energy-efficiency. However, despite having com-
plementary features, GPUs and FPGAs have been mostly
used independently for the entire training process, thus ne-
glecting the opportunity in assigning individual but distinct
operations to the most suitable hardware. In this paper, we
take the initiative to explore new opportunities and viable so-
lutions in enabling energy-efficient DNN training on hybrid
accelerators. To overcome fundamental challenges including
avoiding training throughput loss, enabling fast design space
exploration, and efficient scheduling, we propose a compre-
hensive framework, Hype-training, that utilizes a combina-
tion of offline characterization, performance modeling, and
online scheduling of individual operations. Experimental
tests using NVIDIA V100 GPUs and Intel Stratix 10 FPGAs
show that, Hype-training is able to exploit a mixture of GPUs
and FPGAs at a fine granularity to achieve significant energy
reduction, by 44.3% on average and up to 59.7%, without any
loss in training throughput. Hype-training can also enforce
power caps more effectively than state-of-the-art power man-
agement mechanisms on GPUs.
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1 Introduction

Deep neural network (DNN) training is quickly emerging as
a common yet heavy workload in HPC data centers. How-
ever, training DNNs often involves large data sets, high com-
putation power and long training time. As a result, DNN
training can be extremely energy-consuming. For example,
training BERT (a large natural language processing model)
with eight NVIDIA V100 GPUs for 12 days takes nearly 2.5
billion Joules [3, 16]. Unfortunately, the situation only gets
worse as more complex DNN models are being developed.
Therefore, it is imperative to explore novel approaches to
effectively reduce energy consumption of DNN training [14].
Indeed, the main reason for the large energy consumption
of DNN training is the use of GPUs. Leveraging the massive
thread-level parallelism, GPUs have become the predominant
processing platform for DNN training. However, GPUs are
very power hungry. NVIDIA GPUs, such as V100 and P100
with thermal design power (TDP) of 300 Watts and 250 Watts,
respectively, can easily account for more than 90% of the
total system power during DNN training [25]. Nevertheless,
it is challenging to reduce GPU power and energy without
impacting training throughput. The prevalent method of
scaling down GPU core frequency to save power [19, 35, 38,
57] may degrade training throughput considerably, e.g., over
30% as observed when scaling down the V100 core frequency
from the available 1530 MHz level to the 1320 MHz level.
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Meanwhile, Field-Programmable Gate Arrays (FPGAs) are
recently deployed in data centers [50]. FPGAs are highly
customizable and especially good at handling streaming
workloads in a pipeline fashion. Much success has been
achieved in using FPGAs to accelerate machine learning
inference [33, 43, 46, 65, 67], although limited works have
explored the use of FPGAs for training [20, 29]. Compared
with GPUs, FPGAs have much lower power consumption
(e.g., 90W in Stratix 10 FPGA vs. 300W in V100). However,
FPGAs also have relatively lower operating frequency and
memory bandwidth (e.g, 14.9 GB/s in Stratix 10 vs. 900 GB/s
in V100), which hinders their effective use in DNN training,.

Despite their complementary features, GPUs and FPGAs
have only been used independently so far for DNN training,
in the sense that the entire training process is assigned to run
either on GPU or FPGA alone. This neglects the rich diversity
of individual operations (e.g., MatMul) in DNN training, and
squanders the tremendous opportunity for improvement. For
instance, some operations with specific inputs do not demand
large thread-level parallelism or high memory bandwidth
(Section 3.2), thus can be assigned to FPGA for comparable
and sometimes even better performance but significantly less
power, while other operations remain to run on GPU. The
diverse characteristics of operations prompt us to rethink
the current architecture and combine the strengths of GPUs
and FPGAs for DNN training.

Research objective: In this work, we take the initiative
to explore new opportunities and viable solutions in enabling
DNN training on hybrid GPU-FPGA accelerators. Such hy-
brid architectures provide the flexibility to execute individ-
ual training operations on high-performance (i.e., GPUs) or
power-efficient hardware (i.e., FPGAs) based on operation
characteristics and problem input. We investigate such a
hybrid accelerator system featured with GPUs and FPGAs
to demonstrate the usefulness in two common and impor-
tant use cases: (1) saving energy as much as possible without
throughput loss, and (2) meeting a strict power cap while
maximizing throughput. Such a power cap is often imposed
in data centers [25, 28, 42, 63, 64, 66] to reduce production
cost and improve system reliability.

Fundamental challenges: As no work has studied fine-
grained DNN training optimizations on hybrid GPU-FPGA
accelerators, we have identified three key challenges that
must be addressed:

(1) How to avoid training throughput loss. Since FPGAs
typically have lower operating frequency and memory band-
width than GPUs, directly offloading operations to FPGA
may result in large performance loss. For example, in our
hybrid system consisting of three Stratix 10 FPGAs and one
Tesla V100 GPU, offloading the most common operation
MatMul to FPGAs saves power by 51W or 20% of the total
system power, but causes 16.2% throughput loss on average.

(2) How to schedule individual operations. A DNN training
workload usually has thousands or even millions of train-
ing steps; each training step has hundreds of operations;
each operation has different choices of executing on GPU or
FPGA. For a specific operation, depending on the input, the
operation may also manifest varying computation and mem-
ory access patterns, leading to different choice of execution.
Given the large number of combined choices of executing
operations, how to schedule operations to minimize energy
consumption or meet an enforced power cap is challenging.

(3) Optimizing performance of an FPGA kernel is time-
consuming, up to tens of hours, depending on kernel design
complexity, as the optimizing process involves lengthy place-
ment and routing cycles to assign the nets of the circuit to
routing segments and turn on programmable switches [62].
Each operation kernel may use various FPGA-specific con-
figurations, such as the number of compute units (CU), the
width of SIMD (kernel vectorization), the work group size,
etc. Therefore, it is not practical in terms of time to exhaus-
tively evaluate all possible configurations in the design space
on FPGA to find the optimal one.

Our work: We propose a novel and comprehensive frame-
work named Hybrid performance-aware energy-efficient train-
ing (Hype-training), that enables effective DNN training on
hybrid GPU-FPGA architectures. Hype-training hides the
underlying architecture complexities from users and auto-
matically maps individual operations onto GPUs and FPGAs
while meeting energy, power and performance goals.

Specifically, to address the first challenge on performance,
we analyze and characterize DNN training at the per-operation
level. Using memory bandwidth utilization and IPC of opera-
tions on GPUs as indicators, we identify those operations that
can perform comparably or even better on FPGAs than on
GPUs. We further analyze task dataflow graphs of DNN train-
ing workloads and identify operations that are not on the
critical path of the execution. Those operations are offloaded
to FPGAs, only if offloading to FPGA plus the involvement
of data movement does not prolong the critical path. We also
implement a set of techniques to optimize FPGA kernel per-
formance and avoid throughput loss, such as local memory
buffering, loop tiling and double buffering.

To address the second challenge on scheduling, we de-
velop a runtime system that schedules operations based
on the above offline analysis and characterization of op-
erations. The runtime system examines the runtime power
consumption to determine which operations should be exe-
cuted and in which order, such that the data movement and
energy consumption are minimized while not violating user-
specified power cap. Furthermore, Hype-training allows the
co-existence of multiple FPGA kernels for a given operation,
each of which is optimized for one type of input. For a given
input, the runtime system schedules a kernel that leads to
the largest energy saving without performance loss. Such



input-aware scheduling makes the best use of FPGAs for
energy saving.

Last but not the least, to explore the large optimization
space of a FPGA kernel, we propose performance models to
decide which configuration combination leads to the best
performance for a given operation. Our performance models
are featured with being operation-specific and input-aware,
which implicitly captures workload characteristics into mod-
els and enables lightweight yet accurate modeling. This dis-
tinguishes us from all the existing models [8, 58, 59, 67] that
are generic but input-unaware (hence less accurate). With
our performance models, users no longer need to evaluate
each possible configuration directly on FPGA. This method
reduces kernel optimization efforts from tens of hours to
seconds, while achieving the same top-five accuracy.

To summarize, this is the first work that explores hybrid
GPU-FPGA accelerators for energy-efficient DNN training.
Our work demonstrates the great potential of using hetero-
geneous hardware resources in a fine-grained fashion for
training acceleration. The main contributions of this paper
are the following:

o We identify fundamental challenges in enabling effective
DNN training on hybrid GPU-FPGA accelerators;

e We propose Hype-training, a software framework inte-
grated with TensorFlow for operation scheduling and per-
formance optimization on hybrid GPU-FPGA architec-
tures. Hype-training is transparent to users and does not
require modification of DNN models;

o Evaluation results show that Hype-training reduces energy
consumption by 44.3% on average (up to 59.7%) without
loss in training throughput, and being able to effectively
enforce power caps with 10.1% performance improvement
than without Hype-training.

2 Background

FPGA and OpenCL. FPGA is emerging as a promising ac-
celerator for its energy efficiency, high performance, and
customizability [33]. Intel’s OpenCL SDK makes program-
ming of FPGA much easier than the traditional methods.
Users can employ the OpenCL SDK to develop and compile
OpenCL kernel files to generate FPGA bitstreams. However,
OpenCL compilation for FPGA is time-consuming (typically
take hours for a kernel).

In OpenCL, work item is the basic unit of execution. A
set of work items forms a work group, and a set of work
groups are spawned when an OpenCL kernel is launched.
Each OpenCL kernel can use different configurations to im-
prove performance, such as the number of CU and SIMD
width. Different configuration combinations consume differ-
ent amount of FPGA resources (e.g., RAM blocks and number
of DSPs), resulting in different power and performance.

DNN training. DNN training frameworks like TensoFlow
use a dataflow graph where each node denotes a tensor op-
eration (e.g., Conv2D); The graph specifies data and control
dependencies between operations. A DNN model usually
includes tens of kinds of operations. In each training step, an
operation can be invoked by tens of times with different in-
puts sizes. Across training steps, the characteristics of many
DNN training workloads typically remain stable and hence
predictable [30, 31, 49], providing opportunities to use offline
study to characterize operations for online scheduling. In the
following, we use “operation” and “kernel” interchangeably.

We target common DNN models whose dataflow graphs
do not exhibit data-dependent control, and each training
step goes through exactly the same graph, which implies the
input data of operations can be known before training. Such
DNN models are very common and have been the targets of
recent works [22, 30, 31, 52, 68].

3 Proposed Approach
3.1 Overview

We propose the Hype-training framework for systems with
hybrid GPU-FPGA accelerators. As depicted in Fig. 1, there
can be multiple GPUs and FPGAs attached to the system
through the PCle interface. CPUs are in charge of kernel
allocation and scheduling operations to the associated GPUs
and FPGAs at runtime. Power sensors are embedded in hard-
ware components such as GPUs, CPUs and main memory,
providing power information for runtime scheduling. These
sensors widely exist in modern hardware [10, 17, 27].

GPU and FPGA, although both of them are used as accel-
erators, play different roles for DNN training. In particular,
GPU is used to enable high performance execution of oper-
ations; FPGA 1is not used to provide superior performance
over GPU; Instead, FPGA is used to run some operations
traditionally executed on GPU to reduce energy and power.

Fig. 2 shows an overview of Hype-training. It includes
two offline phases and a runtime scheduler. The two offline
phases are used to determine the operation candidates that
can be offloaded to FPGAs, and to optimize the performance
of these operations. The first offline phase (Section 3.2) per-
forms power and performance characterization of operations
and makes FPGA-offloading decisions based on computation
intensity and memory bandwidth utilization of the opera-
tions. The second offline phase (Section 3.3) optimizes per-
formance of those FPGA kernels for offloading by choosing
the optimal configurations based on performance models;
The second offline phase also chooses small operations based
on critical path analysis for FPGA offloading. The runtime
scheduler (Section 3.4) schedules operations based on the
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Figure 2. Overview of Hype-training.

offloading decisions and user requirement (either minimiz-
ing energy without reducing performance or maximizing
performance under a power cap?).

3.2 Power and Performance Characterization

Table 1 lists the power and performance of seven opera-
tions that are predominant in DNN training. The first five
operations can easily account for the majority of the total
training time of a DNN model. For example, in Resnet50, the
five operations takes more than 90% of the total execution
time. Additionally, we study several small operations, such
as Transpose and Mul listed in the table (others are profiled
but not listed). Those small operations exist widely in DNN
models. The characterization provides insights on how to
offload operations to GPUs and FPGAs.

We study operations using tf-profiler [2] and nvprof [1].
These tools allow us to access hardware counters and corre-
late them with workload execution. The numbers presented
in Table 1 are for one NVIDIA V100 GPU plus three Intel S10
FPGAs, but similar trends are observed for different number
of GPU and FPGA combinations as discussed in evaluation.
The memory bandwidth of a single V100 and S10 is 900
GB/s and 14.9 GB/s, respectively, and the peak operating
frequency for V100 and S10 is 1530 MHz and 1000 MHz, re-
spectively. A script is developed that runs each operation in
the standalone mode in TensorFlow 1.8 [6]. The input to each
operation is taken from six DNN models (Table 2). We use
tensor cores in V100 to run an operation when the operation
is eligible to use tensor cores in the six DNN models. We
choose three inputs for each operation, representing cases of
small, medium and large input sizes. Take MatMul with the
dimension size (M, K, N) as an example. The small input size

2Unless indicated otherwise, “performance” refers to training throughput.
Training accuracy is unaffected by any part of Hype-training, as we do not
change task dataflow, training iterations, or FP precision.

has 256<M<1024, 256<K<1024,256<N<1024; The medium
one has 1024<=M<4096, 1024<=K<4096, 1024<=N<4096; The
large one has any dimension size larger than 4096. We cat-
egorize the input size in the above way, based on detailed
profiling on common machine-learning models and the im-
pact of input size on execution time. When running oper-
ations on GPUs, the default configurations in TensorFlow
are used. For a big operation such as MatMul or Conv2D with
multi-dimensional inputs, we run it on three FPGAs for best
performance, by partitioning the dimension size of input (i.e.,
rows and columns). For a small operation such as Relu, we
run it as a whole on one FPGA, as opposed to three FPGAs,
for best performance. Optimization techniques discussed in
Section 3.3 are also applied. We use NVIDIA System Manage-
ment Interface [44] and Powerplay Analyzer [11] to measure
GPU and FPGA power, respectively. Each operation is run
ten times on both FPGAs and GPUs to get average results.

Table 1 shows power consumption of an operation on
GPU varies significantly, depending on the problem input.
For example, the variance of peak power for the operation
BiasAddGrad is up to 39%. Unlike GPU, the power variance
due to input difference is much smaller on FPGA, e.g., less
than 8% for BiasAddGrad. The table also shows that across
operations, GPU has larger variance in power consumption.
For example, the peak power of MatMul and Transpose dif-
fers by 68.4% on GPU but is only 6.1% on FPGA.

The above power variance across inputs and across opera-
tions can be attributed to three reasons. First, the power vari-
ance on GPU is closely related to the utilization of streaming
multiprocessors (SMs). SMs are the most power-consuming
elements on GPU. Different operations offer different thread-
level parallelism and have different utilization of SMs. For
example, a small operation such as Mul uses only one SM,
causing it to use much less power than a larger operation
such as MatMul. Besides, given an operation, different inputs
have different SM utilization due to memory access patterns
and usage of shared memory, which also leads to variance
in power consumption. For example, Conv2D using all SMs
has 53.3% variance in SM utilization when executed with
different inputs, because of usage of shared memory.

Second, the power consumption of FPGA is dominated by
that of RAM and DSP. With optimizations for kernels, the
variance of dynamic power consumption of RAM and DSP
for different operations with different inputs is relatively
small, which leads to similar power consumption in FPGA.

Third, the difference between peak power and static power
of FPGA is smaller than that on GPU. For the evaluated S10
FPGA and V100 GPU, the difference between peak and static
powers is 33W and 261W respectively. Larger difference can
trigger larger variance in power consumption.

Table 1 also reveals that regardless of the operation, run-
ning on FPGA always uses less power than on GPU. This
observation is true for all problem inputs. Hence, without



Table 1. Profiling results of some of the representative operations in DNN training on FPGA (S10) and GPU (V100). The top
five are large operations and the bottom two are small operations.

. . FPGA GPU
Operations Input Size peak power (W) | average power (W) | execution time (ms) | peak power (W) | average power (W) | execution time (ms) | mem bw utilization (GB/s) | IPC
Small 58 58 1.341 214 206 1.720 38.35 5.401
MatMul Medium 65 65 3.551 274 270 4.137 48.05 5.549
Large 75 75 7.932 302 300 7.144 57.72 5.764
Small 55 55 0.449 199 191 0.568 43.70 3.231
Conv2D Medium 60 60 1.825 272 262 2.344 60.31 3.342
Large 63 63 4.663 296 292 4.088 71.93 3.357
Small 70 70 2.137 202 199 1.314 214.70 3.982
Conv2DBackpropFilter | Medium 73 73 5394 280 258 2.238 237.48 4.246
Large 80 80 30.327 302 296 8.309 265.25 4.388
Small 83 83 2.227 210 206 0.874 245.04 3.891
Conv2DBackpropInput | Medium 88 88 6.115 290 274 2.912 274.87 4.078
Large 90 90 25.873 302 298 8.060 291.70 4.236
Small 73 73 0.528 216 214 0.289 163.06 5.281
BiasAddGrad Medium 78 78 1413 266 256 0.556 176.69 5.724
Large 80 80 5.905 300 292 1.779 185.57 6.007
Small 13 13 0.009 99 95 0.010 7.75 1.036
Mul Medium 15 15 0.011 105 99 0.014 8.76 1.117
Large 18 18 0.023 113 109 0.022 9.62 1.239
Small 13 13 0.006 83 81 0.006 7.15 1.254
Transpose Medium 13 13 0.080 93 89 0.009 8.74 1.311
Large 15 15 0.012 97 95 0.010 9.41 1.503

considering performance impact of FPGA, running opera-
tions on FPGA is always preferred.

Regarding performance, Table 1 shows that the perfor-
mance of some operations (particularly Conv2D and MatMul)
on FPGA is very close to or even better than on GPU, al-
though GPU has a higher memory bandwidth and operating
frequency than FPGA. For example, for the operation MatMul,
the performance with a large input on FPGA is only 11.1%
worse than on GPU (7.932ms vs. 7.144ms), and the perfor-
mance with a small input on FPGA is even 22.1% better than
on GPU (1.341ms vs. 1.720ms).

To study the reason for the above observation, we mea-
sure memory bandwidth and IPC when running Conv2D and
MatMul on GPU, shown in Table 1. Table 1 does not report
memory bandwidth utilization for FPGA, because it is not
measurable by any tool but bounded by the the peak memory
bandwidth 14.9 GB/s. We find that the two operations con-
sume relatively small memory bandwidth (much smaller than
Conv2DBackpropFilter and Conv2DBpropInput, two most
time-consuming operations). Also, the operation Conv2D has
a relatively low IPC. This indicates that the performance of
the two operations are not affected too much by the low mem-
ory bandwidth and operating frequency of FPGA. MatMul
with the small input has worse performance on GPU, because
this operation cannot offer many thread-level parallelism
for GPU, while the customized pipeline execution scheme in
FPGA is beneficial to run this operation.

Table 1 also shows that for some operations, FPGA leads
to much worse performance than GPU. For example, for the
operation Conv2DBackpropInput, FPGA is 110% worse than
GPU. These operations are characterized with high memory
bandwidth utilization. This utilization is 291.70 GB/s for
Conv2DBackpropInput, which is much higher than that of
MatMul (57.72 GB/s at most) where FPGA outperforms GPU.

We summarize the above observations as follows.

1. For an operation with different inputs, the variance in
power is large on GPU but small on FPGA;

2. Different operations have different power consumption;
Such difference is much bigger on GPU than on FPGA;

3. Running operations on FPGA always uses less power than
on GPU;

4. Some operations on FPGA can lead to comparable or even
better performance on GPU.

We repeat the tests on other GPUs and FPGAs, including
NVIDIA K80 and Intel Arria 10, and vary the number of
GPUs and FPGAs, all resulting in the same observations.

Implications of the observations. Observation 1 indi-
cates that we must consider the impact of input on perfor-
mance. Based on this, our performance models in Section 3.3
include input information as model parameters.

Observation 2 motivates us to use operation-specific mod-
eling to estimate performance instead of building a generic
model for all operations. The operation-specific model easily
introduces operation-specific input into the models. More-
over, since the number of power-consuming or time-consuming
operations is small (less than ten) and repeatedly used in
DNN models, we do not need to build many models, making
operation-specific performance models viable.

Observation 3 provides us useful hints on runtime schedul-
ing (Section 3.4). If there is no power cap, there is no need to
consider the power consumption of operations on FPGA, be-
cause running operations on FPGA always saves power. We
just need to focus on offloading an operation to the device
that has the highest performance for that operation.

Observation 4 gives us hints on which operations to select
to run on FPGA. In particular, the memory bandwidth utiliza-
tion and IPC of an operation running on GPU can be good
indicators of whether running the operation on FPGA can
cause performance loss (compared with running on GPU).

Based on the above, we set up two thresholds, one for
memory bandwidth (trdem pw) and one for IPC (trdipc).



An operation whose memory bandwidth is smaller than
trdmem_pw or IPC smaller than trdipc on GPU is a candidate
to be offloaded to FPGA. This candidate is then optimized
for performance (Section 3.3) and potentially scheduled by
the runtime (Section 3.4). Using the above threshold-based
method, we can save the effort on FPGA kernel optimization
by eliminating unpromising operations early on. The two
thresholds are obtained by running several common oper-
ations with a range of problem inputs and studying when
the performance on FPGA is better than on GPU. We found
that using two operations MatMul and Conv2D with various
problem inputs is sufficient to represent various memory
access intensity and computation parallelism, hence effec-
tively building a filter to offload operations. Each threshold
is the maximum value of the thresholds from the two oper-
ations. We use maximum, which is conservative to offload
operations to FPGA in order to avoid performance loss. How-
ever, our experiment results suggest that the case of missed
promising operations due to this conservative selection is
rare (less than 1%) and that the missed operations tend to
be small so do not contribute much to the overall training
energy consumption.

3.3 Offline FPGA Kernel Optimization

After determining which operations to offload to FPGA based
on workload characterization, we implement them in OpenCL
and optimize their performance through design space explo-
ration and critical path analysis.

Enabling fast design space exploration. To optimize
the performance of an FPGA kernel, we need to find the best
combination of the following four configuration parameters
that have the largest influence on kernel performance. Each
parameter itself represents a challenging trade-off:

The number of CU is critical to the construction of kernel
pipeline and FPGA hardware utilization. The kernel pipeline
can be replicated multiple times to generate multiple CUs and
achieve higher throughput. However, more CUs require more
hardware resources, which tends to reduce FPGA operating
frequency that in turn hurts throughput.

The SIMD width determines how many work-items are ex-
ecuted in a single instruction. Larger SIMD width increases
data processing efficiency due to potential memory coalesc-
ing. Meanwhile, wider SIMD puts greater pressure on mem-
ory bandwidth and may also reduce performance due to
increased chance of control path divergence.

The degree of loop unrolling can be challenging to decide, as
a larger degree of loop unrolling exposes more computation
concurrency but also requires more FPGA fabric resources
(e.g., DSP and RAM) that are shared by other components.

The work group size determines the number of work-items
per group. A larger work group size allows compilers to apply
aggressive optimization to tap hardware resource without
using excess logic, but is limited by available shared FPGA
resources and the maximum supported work group size.

Identifying the best combination of the above four param-
eters is time consuming. Taking the operation MatMul for
example, compiling and running each combination takes
around 8 to 15 hours, and the number of combination is
20,480 on our FPGA (510). To avoid the time-consuming
process of evaluating each combination, we introduce per-
formance models to estimate and compare the performance
of various combinations indirectly. Specially, given opera-
tion input and configuration parameters, the performance
is evaluated via a new metric that we refer to as the latency
indicator (LI). LI is operation specific. We use MatMul as an
example below, and the modeling of other operations follows
the same method. The LI for MatMul (A X B) is defined as:

Aheight X Awidth X Bwidth
work_group_size X Fmax (cu_num, simd_w, ul)

LI = (1)

In Equation 1, Apeigh: and Avigin (Awidth = Bheight) are
the dimension sizes of the 2D input A, and B,,;4; is of the
2D input B, so the numerator in the equation quantifies the
total computation in the operation. Fp,,x is FPGA operating
frequency, which is a function of the number of CU (cu_num),
width of SIMD (simd_w), and degree of loop unrolling (ul).
A smaller LI indicates better performance.

In essence, the performance of an kernel is related to the
operating frequency Fp,qx and input size. Smaller input and
higher operating frequency lead to better performance, both
of which are captured in the latency indicator. F,,,, works
as a bridge to connect the three configuration parameters
with the performance. F,,x reflects the trade-off between
hardware resource constraints and the desire of using more
CUs, wider SIMD and higher degree of loop unrolling for
better performance. The equation also considers the impact
of work group size on performance: larger work group sizes
lead to higher performance, subject to hardware constraints.

Given an operation and its input size, we use Equation 1
to determine the optimal configuration using the following
method. For each combination, we use the vendor compiler
(Intel FPGA SDK for OpenCL offline compiler) to get Fp,qx-
Getting Fp,,x for a combination of configurations with the
compiler takes only 1-5 seconds. For an operation, there
can be hundreds of combinations, and getting F, 4 for all
of them only takes hundreds of seconds in total, much less
than the time of compilation and execution of FPGA kernel
with various configurations. The input sizes, Apeighs> Awidth
and Bp,ighs are obtained by offline analysis. For many DNN
training workloads, once their hyperparameters (e.g., batch
size) are determined, the input sizes for each operation can
be known before the training takes place [22, 30, 31, 52].

We use MatMul with a specific problem input as an exam-
ple to illustrate the usage of performance model. Suppose
two input A (2048x1024) and B (1024x1024), and there are
two combinations. We want to determine which one can lead
to better performance. The first one has 2, 1, 128, and 64 as



the number of CU, SIMD width, work group size and degree
of loop unrolling respectively; The second one has 4, 2, 64,
and 64, respectively. We use OpenCL SDK to generate Fy;
for the two combinations, which are 210 MHz and 241 MHz.
Based on Equation 1, LI of the two combinations are 81.81
and 142.57, respectively. Hence, we estimate that the first
combination likely performs better because of a smaller LI.

Our performance models have two features, operation
specific and input awareness. The two features distinguish
the models from all the existing efforts that build generic
models to predict performance of OpenCL programs for FP-
GAs [58, 67]. Our proposed models turn out to be extremely
efficient and accurate in predicting the relative performance
of different combinations, as shown later in Section 5.5.

Critical path analysis for FPGA kernel offloading.
Besides using the characterization study to choose opera-
tions for FPGA offloading, we also use critical path analysis
to choose those small operations that are not in the critical
path to offload to FPGA. Running those small operations on
FPGA might incur longer latency than on GPU. However, as
long as the increased execution time is not exposed to the
critical path, there will be no loss in training throughput.

We use the following method for the offline critical path
analysis. We utilize the algorithm proposed in [37] and adapt
their open-sourced simulator [36] to get the critical path.
Based on that, we choose which small operations for offload-
ing to FPGA. For any operation not in the critical path, we
implement it with OpenCL and measure its performance on
FPGA. The operation is offloaded only when the execution
time of the operation on FPGA plus the data movement time
between CPU and FPGA is shorter than the critical path,
thus not prolonging the critical path.

Other FPGA kernel optimizations. We also apply a set
of common optimization techniques to improve the perfor-
mance of FPGA kernels, including local memory buffering
on FPGA’s on-chip scratchpad memory to reduce expensive
off-chip RAM accesses, loop tiling to improve data locality,
and double buffering to reduce data movement time.

We further optimize the operation performance via multi-
kernels for input adaptiveness. Particularly, we generate
three kernels for each FPGA operation. This is based on
the fact that an operation with different input sizes needs
different configurations for the best performance. Given an
operation, its inputs used in the training are first collected
and then grouped by size into three types, i.e., small, medium
and large. For each type, we use the latency indicator-based
approach to decide the best configuration and generate a
kernel. Therefore, we have three kernels for an operation.
They are combined into one single FPGA bitstream file. Be-
fore DNN training occurs, Hype-training loads the combined
bitstream file into FPGA upon OpenCL initialization. During
the training, Hype-training locates the kernel based on the
operation input size to perform the operation.

After FPGA kernel optimization, we run the kernels on
FPGA and compare with their counterpart on GPU. Only
when an FPGA kernel outperforms the corresponding GPU
one, can the kernel be used as a candidate for runtime sched-
uling on FPGA (next subsection). This makes sure that per-
formance loss is avoided. It also eliminates the unpromis-
ing operations mistakenly selected by the threshold-based
method during offline characterization.

3.4 Runtime Scheduling

The runtime system schedules operations based on the of-
fline kernel characterization (Section 3.2) and offline critical
path analysis (Section 3.3). The runtime system schedules
operations for two use cases: Case I: minimizing energy
consumption without loss in training throughput; Case 2:
achieving the highest possible performance (throughput)
without violating a given power cap.

The runtime system assumes that the following informa-
tion is available when scheduling operations. The peak and
average power consumption of the operations running on
GPU (P[?ef; [k] and PSPU) and the power consumption of the

operations running on FPGA (PFP¢4) is known. The above
information can be collected through the offline characteriza-
tion study. This is feasible because a DNN framework usually
has a limited number of operation types and the operations
are repeatedly used within a model and across models. The
cost of offline characterization is acceptable and amortized.
The same methodology is used in the existing work to direct
runtime scheduling (e.g, [30, 31, 34, 52]). We discuss how the
runtime schedules operations for the two cases as follows.

Handling Case 1. The runtime system examines the task
queue in TensorFlow, whenever a GPU or FPGA becomes
idle after finishing the previous operations. In the task queue,
there are operations with dependency resolved and ready to
launch. The runtime system will schedule operations to run
on the idling GPU (or FPGA), if there are pending operations
scheduled to run on that GPU (or FPGA) based on the offline
analysis. If GPU is idle and there are only FPGA operations
ready in the queue, the runtime system will run the opera-
tions on GPU without waiting (thus no worse than without
Hype-training). If an operation has multiple FPGA kernels,
each corresponding to one type of input size, the runtime
system selects which kernel to run based on the operation
input as discussed previously.

Handling Case 2. The runtime system examines the
power sensors and the task queue in TensorFlow, whenever
a GPU or FPGA becomes idle after finishing the previous
operations. From the power sensors, the runtime system gets
the current system power consumption. The runtime will
schedule an operation whose peak power on the idling device
(GPU or FPGA) would not lead to a violation of the power
cap if scheduled to that device. If there is no such operation,
the runtime system will wait until a new operation is ready.



This ensures that the system does not violate the power cap.
When a GPU and an FPGA becomes idle at the same time,
without violating the power cap the runtime system uses
GPU, in order to achieve the highest performance.

Reducing data movement latency. Prior work has re-
ported that the data movement between CPU and FPGA
memories is much faster than that between CPU and GPU
memories [9]. This is consistent with the observation in our
test system, where moving 512 KB data between an Intel
12-core CPU and S10 FPGA through PCle 3.0 is 0.547 ms, but
moving the same data through PCle 3.0 between the same
CPU and an NVIDIA Tesla V100 GPU is 1.198 ms. Therefore,
using FPGAs does not introduce longer data movement time
compared with GPU-only system.

However, there is a chance that two operations with de-
pendency previously scheduled to run on GPU may now run
on GPU and FPGA separately. In particular, when one oper-
ation is finished on GPU and the other one (referred to as
the target operation in the rest of this discussion) is about to
run on FPGA, there is an extra data movement from GPU to
CPU and then from CPU to FPGA. To reduce this extra data
movement time, the runtime system tries to overlap the data
movement with computation on GPU as much as possible.
To achieve that, the runtime system examines the next oper-
ation to run on GPU. The execution time of that operation
has already been known from the offline profiling and kernel
optimization. If the data movement time to offload the target
operation to FPGA is shorter than the execution time of the
operation right before the target operation on GPU, then
the target operation is offloaded to FPGA. Otherwise, it does
not run on FPGA to avoid performance loss. Note that the
execution time of the target operation on FPGA does not
need to be considered here, because after the offline kernel
profiling and optimization, the target operation on FPGA is
expected to perform better than the counterpart on GPU or
off the critical path.

For example, in AlexNet, the operation Conv2D can be of-
floaded to FPGA without suffering from performance loss
caused by data movement, when the immediately previous
operation running on GPU is BiasAddGrad, whose compu-
tation time (5.146 ms) on the V100 GPU is bigger than the
data movement time (4.931 ms).

4 Implementation

Hype-training is designed and implemented as a generic
and extensible optimization framework based on Tensor-
Flow. For some operations (e.g., MatMul and Conv2D), we
use their OpenCL implementation from open-sourced DNN
libraries (i.e., Intel cIDNN and cIBLAS) and apply the set of
optimizations discussed in Section 3.3. For some operations
(e.g., Add and Mul), we implement by ourselves with OpenCL.
Those implementations are optimized with compiler-assisted
optimization directives to expose more concurrency.
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To support scheduling operations to run on FPGAs in DNN
frameworks, we introduce a hierarchical software design to
enable easy integration and flexible scheduling of FPGA-
based operations. The essence of our design is to build a
middleware to decouple the TensorFlow runtime system
from FPGA-vendor specific runtime system. Fig. 3 delineates
the proposed software design at the abstraction level, with
our contribution highlighted in blue.

Our design has three layers. L3 (the top layer) encapsulates
the OpenCL kernel designs and provides a uniform interface
for each operation which may be implemented differently on
different FPGAs. Given L3, the TensorFlow runtime system
can manage those operations as usual. The runtime of Hype-
training is an extension of the TensorFlow runtime.

L2 (the middle layer) and L3 build a middleware to sep-
arate the TensorFlow runtime from the OpenCL runtime
for FPGAs. The OpenCL runtime consists of two parts: one
common runtime provided by FPGA vendors to create con-
text, command queue and memory allocation at L3, and the
other runtime specific to operations and provided by us to
configure, launch and release kernels at L2. The common
runtime provided by the vendors is shared by all the kernels.
With L2 and L3, adding support for FPAGs does not require
disruptive change to the TensorFlow runtime.

L1 (the lowest layer) includes FPGA design files (i.e., bit-
streams to run on FPGA) for potential operations to be of-
floaded to FPGA. The design files are generated from OpenCL-
based programs by FPGA-vendor specific compilers.

The bitstream files are preloaded into FPGA before train-
ing starts, such that it does not impact training performance.
To provide consistent interfaces to invoke operations on
GPUs and FPGAs, we define a set of unified interfaces for
kernel invocation. Overall, our implementation for runtime



scheduling incurs negligible overhead with only 0.1% execu-
tion time overhead and no memory overhead on the host.
Supporting a new operation in Hype-training goes through
the following workflow: (1) implementing the operation in
OpenCL; (2) changing the TensorFlow Op kernel module
to integrate the operation; and (3) performing offline oper-
ation characterization. In our experience, it typically takes
5-8 hours (excluding OpenCL programming efforts).
Discussion on deployment cost. In our architecture,
FPGA works as an accelerator to reduce energy consumption
of GPU. This design introduces extra costs, including the
ownership cost of FPGA and static power consumption of
FPGA when the system is idle. Given the considerable energy
saving, we argue that the ownership cost can be paid off
in the long term. For example, on our platform with three
S10 FPGAs ($15000) per V100 GPU, using Hype-training
saves 1.29 million Joules per hour (the average saving in our
evaluation) leads to $17900 saving in one year. Also, FPGA
can be turned off to save static power when the system is
idle. Hence, the deployment cost of our system is acceptable.

5 Experimental Evaluation
5.1 Experimental Setup

Experimental platforms. Our experimental system con-
tains two Xeon E5-2630 CPUs, two GPUs (V100) and six
FPGAs (Intel S10, whose production model is GX 2500). Each
GPU and FPGA can be individually disconnected or disabled
to create various configurations for testing and comparison.
GPUs and FPGAs are attached to the server by PCle 3.0. Note
that CPUs do not compute operations as CPUs are in charge
of scheduling and their power consumption is usually greater
than FPGA. The operating system is Ubuntu 16.04. We use
training samples per second to measure training throughput.
We use training throughput per Watt to measure energy effi-
ciency (which can be calculated as: total_ops/total_energy
= (ops/secondxt)/(powerxt) = throughput/power). Unless
indicated otherwise, all tests use the default GPU setting
without power capping.

Tools. We use Intel FPGA SDK for OpenCL 19.1.0 for
programming FPGA and use TensorFlow 1.8 [6]. We use
CUDA 10.1 [4] and cuDNN 7.5 [13] for GPU. The measured
system power includes both the dynamic and static power
consumption of CPUs (including memory), GPUs, FPGAs,
and data movement between CPUs and GPUs/FPGAs. This
is achieved by using a collection of industry-standard tools
including NVIDIA System Management Interface [44], Intel
Running Average Power Limit (RAPL) Interface [5], and Intel
Powerplay Analyzer [11].

Workloads. We use four ImageNet winner DNNs includ-
ing Alexnet [26], Inception3 [55], Vgg16 [51] and Resnet50 [21].
We also evaluate DCGAN [47] and BERT-Large [3]. For the
first four models, Imagenet is used as the training dataset [15].
For DCGAN and BERT-Large, we use CelebA [32] and SQuAD

[48] as the training dataset respectively. The training batch
size for BERT-Large is 10, and for other models is 256, accord-
ing to [? ]. When running an operation on multiple FPGAs,
we use the method described in Section 3.3.

5.2 Overall Results

We compare GPU-only (one GPU) and GPU-FPGA (one GPU
+ three FPGAs, enabled by Hype-training) in this subsection,
and other combinations of GPUs and FPGAs are presented
in the next subsection. Fig. 4 compares the performance,
average power, and peak power for the six models. Table 2
gives the details on which operations are offloaded and their
ratios to the total number of operations and execution time.
In general, if a larger portion of operations is offloaded to
FPGA, there tends to be larger improvement on the power
and energy efficiency, as presented below.

Performance. Fig. 4 shows that, compared with GPU-
only, there is no loss in the training throughout in Hype-
training for all the models. The strict no-throughput-loss in
Hype-training is attributed to our operation characterization
study and the critical path analysis that only choose opera-
tions that do not cause performance loss to offload to FPGAs.
In fact, there is even an average improvement of 10.1% in
throughput across the six models for two main reasons.

First, after offloading some operations to FPGA, these
operations no longer compete for GPU resources, such as
memory bandwidth and GPU SM cores, with other opera-
tions on GPU. This allows operations that are not offloaded
to FPGA to deliver higher performance on GPU. For ex-
ample, as shown in Fig. 5(b), when some operations are
offloaded to FPGA, the performance of other operations
(e.g., Conv2DBackpropFilter and Conv2DBackpropInput,
the top two most time-consuming operations for the first
five models) on GPU is improved by 17.8% on average, and
the performance of MatMulGrad and Dropout in BERT-Large
on GPU is improved by 17.1%.

Second, the data movement time between CPU and FPGA
is smaller than between CPU and GPU, as discussed in Sec-
tion 3.4. Moreover, as operations are offloaded to FPGA, the
data movement time may be partially overlapped by the run-
time scheduler. Fig. 5(a) supports this analysis, showing that
the data movement time exposed to the critical path (i.e., the
non-overlapped part) is reduced by 11.1% on average, after
some operations are offloaded to FPGA.

Power consumption. Fig. 4 also shows that GPU-FPGA
with Hype-training consumes 23.3% less average power than
GPU-only. In particular, Resnet50 has the largest power sav-
ings (28.3%), and Alexnet has the smallest (20%). This is
expected as Resnet50 has the large portion of computation
(41.8% of execution time in Table 2) offloaded to FPGA.

Energy efficiency. Fig. 5 (a) plots the energy efficiency

improvement compared with GPU-only. Hype-training achieves

a significant improvement with an average of 44.3% (up to
59.7%). This improvement in energy efficiency comes from
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the large power savings in GPU-FPGA with no performance
loss (thus higher throughput to watt ratio).

5.3 Results for Other GPU and FPGA Combinations

We evaluate Hype-training with different number of GPUs
and FPGAs in the hybrid accelerator system.

Multiple GPUs. To use multiple GPUs for training, we
use the data parallelism-based training [60], which builds on
top of the Mirrored Strategy in TensorFlow. This strategy
duplicates the model on each GPU device. Model parameters
are updated synchronously among multiple GPUs. Fig. 6
compares the results of GPU-only (using 2 GPUs) and GPU-
FPGA (2 GPUs and 6 FPGAs). Fig. 8(a) shows the energy
efficiency improvement for GPU-FPGA over GPU-only. On
average, Hype-training achieves 11.2% performance improve-
ment while saving energy and power by 46.6% and 24.1%,
respectively, compared with GPU-only.

Two GPUs vs. one GPU + one FPGA. Fig. 7 presents
the training throughput and power consumption. We see
that GPU-only (2 GPUs) performs 85.1% better than GPU-
FPGA in terms of training throughput, because of GPU-only
has an extra GPU. However, this does not mean that Hype-
training has performance loss. Hype-training does not aim
to achieve better performance than 2 GPUs with only one
GPU and one FPGA (which is unlikely, if not impossible).
Rather, Hype-training aims to utilize available FPGA(s) in
addition to GPU(s) in the system to achieve the same train-
ing throughput while reducing the total energy or without
violating the power cap. In this particular case, GPU-only
(2 GPUs) actually consumes 124% more power than GPU-
FPGA, which may not be acceptable in cases with power
capping (next subsection presents results under power caps
in more detail). It is worth noting that GPU-FPGA achieves
an average of 20.9% better energy efficiency than GPU-only,
as shown in Fig. 8(b).

Different numbers of FPGAs. We also evaluate scenar-
ios where the number of FPGAs increases gradually from 1
to 4 to process training operations coupled with one GPU.
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Although detailed results are not presented here due to space
limitation, the proposed Hype-training has no throughput
loss in any of the cases, while achieving varying degree of
power savings (e.g., 14.2% with 4 FPGAs) and energy savings
(e.g., 40.4% with 4 FPGAs). This further illustrates the poten-
tial of hybrid GPU-FPGA accelerators and the effectiveness
of Hype-training.

5.4 Evaluation with Power Capping

We evaluate if Hype-training can meet power caps while
maximizing performance. For comparison, we use the power
management mechanism (PMM) on GPU [25, 28], which
changes core frequency and voltage to adjust power. Both
Hype-training and PMM try to keep GPU power consump-
tion under a specified power target as much as possible due
to the concerns on system reliability and cooling [25, 66].
With a system-wise power cap of 230 Watts, Fig. 9 plots the
runtime power consumption for 40 iterations during training,
and Table 3 compares the training throughput.

As can be seen from Fig. 9, Hype-training consistently
keeps the system power below the power cap. In fact, there
is about a 50-70 Watts power margin between the power
cap and runtime power; whereas for PMM, the power cap is
sometimes violated, indicating the inefficiency of PMM on
GPU. Meanwhile, Hype-training has 11.3% better throughput
than PMM on average, according to Table 3. The improve-
ment in throughput comes from smaller data movement time
and less resource contention, as discussed previously.

Besides the above 230 Watts power cap, we also test two
other power caps, 250 Watts and 210 Watts. For PMM, in
the case of 250 Watts, among the six models, Vgg16 has the
largest number of power cap violation (127459 times); In the
case of 210 Watts, Resnet50 has the largest number of power
cap violation (306811 times). In contrast, Hype-training has
zero violation in both cases for all the models.

5.5 Effectiveness of Performance Models

We evaluate the effectiveness of performance models. The
four configuration parameters can form a large design space.
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Table 2. Percentage of offloaded operations to FPGA in all operations (in terms of number of operations and execution time).

DNN models | Offloaded Op. (%) | Exe. Time (%) | Offloaded Op.
Alexnet 22.22 36.05 MatMul Conv2D, Relu, Mul, AddN, MaxPool
Resnet50 27.78 41.84 MatMul, BatchNorm, L2Loss, Conv2D, Relu, Mul
Vggl6 27.78 23.33 MatMul, BiasAdd, Conv2D, Relu, Mul
Inception3 23.81 38.75 MatMul, Transpose, Conv2D, Relu, ReluGrad, Mul
DCGAN 17.54 24.31 MatMul, Transpose, Conv2D, Relu, Mul
BERT-Large 19.32 25.16 MatMul, Add, Norm, Mul, Transpose, Softmax

Table 3. Throughput for six models under 230W power cap
for GPU-only (one GPU) vs. GPU-FPGA (one GPU+three
FPGAs).

DNN models | GPU-only (samples/s) | GPU-FPGA (samples/s)
Alexnet 5666 6313
Resnet50 904 1077
Vggl6 741 775
Inception3 757 882
DCGAN 2641 2928
BERT-large 35 37

For example, the operation MatMul has 20480 combinations
with 4 different settings for the number of CUs, 5 for the
SIMD width, 4 for the work group size, and 256 for the de-
gree of loop unrolling. To explore the large design space, we
first employ a binary search algorithm to eliminate those un-
promising combinations. Those combinations are either in-
feasible due to hardware limitation or inefficiency, compared
to the combinations that are already evaluated. Second, we
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eliminate those combinations whose reported F, 4y is within
10% of the F,,4 of others, as we observe that less than 10%
difference in F,4, between two combinations induces little
actual performance difference.

The above methods significantly reduce the number of
combinations. Among the remaining combinations, we re-
port the results of the top five best-performing combinations
for each operation. Table 4 lists the configurations of the
top fives for the three most common operations offloaded
to FPGA (i.e., MatMul, Conv2D, and MaxPool. The table also
shows the corresponding LI values, and the actual execution
time when we run them on FPGA for verification. It can
be seen that the proposed proxy LI has exactly the same
relative ranking as the actual execution time, indicating that
LT can serve as a reliable indicator for fast comparisons.

6 Related Work

GPU for DNN training. A great deal of research focuses
on using GPUs for DNN training [7, 12, 23, 24, 40, 41, 53,
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Table 4. Latency Indicator (LI) prediction vs. execution time.

Operations | #CU | SIMD width | work_group_size | Degree of loop unrolling | Perf. (exe. time) LI
1 8 256 256 2.595 ms 17.9
2 4 256 128 3.480 ms 20.95
MatMul 1 16 128 128 4.188 ms 49.09
2 1 128 64 9.594 ms 81.81
4 2 64 64 16.515 ms 142.57
2 4 64 64 2.532 ms 19.34
1 8 64 32 5.154 ms 26.47
Conv2D 2 16 32 32 8.134 ms 55.88
4 4 32 16 11.173 ms 61.48
4 8 16 8 18.576 ms 128.94
3 8 256 256 0.284 ms 30.62
2 4 128 64 0.793 ms 74.7
MaxPool 2 16 128 32 1.396 ms 88.33
1 8 64 32 2.275 ms 130.89
4 1 32 1 2.768 ms 148.42

54, 54, 56, 61]. Mirhoseini et al. [39, 40] use a reinforcement
learning model (RL) or a feed forward (FF) model plus a
LSTM model to decide which operations in a DNN model
should run on which devices in a distributed environment
with a mixture of devices such as CPUs and GPUs. However,
using RL or FF+LSTM is too time-consuming (hundreds of
GPU hours to make the decision or train [39]), which is
especially problematic for large DNN models. Hype-training
uses offline characterization plus runtime scheduling to make
the decision, which avoids the lengthy model training; the
offline characterization results, once collected, can be used
repeatedly for any DNN model.

FPGA for DNN training. A few efforts have investi-
gated using FPGA for DNN training. Fox et al. [18] use Zynq
FPGA for low-precision DNN training using 8-bit integer
numbers. Zhao et al. [69] introduce a pipelined structure
implementing convolution and pooling layers, and train a
specific DNN model LeNet on two FPGAs. Geng et al. [20]
train CNN models on a FPGA cluster with 5-83 FPGAs. The
above two researches show that memory bandwidth is a lim-
iting factor for DNN training on FPGAs. Besides, the number
of multiply-accumulate (MAC) units of FPGA is also limiting
factors. To address this problem, Pinjare et al. [45] implement
the back propagation algorithm in a gradient descent form to
reduce the number of multipliers. Our work is different from
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those existing efforts, as we explore fine-grained hybrid use
of both GPUs and FPGAs for DNN training.

7 Conclusions

Current and future DNN training needs to be highly energy-
efficient, particularly with the rapidly growing model com-
plexity and dataset size. In this paper, we propose a frame-
work, Hype-training, that automatically schedules individual
training operations to a hybrid of GPU and FPGA acceler-
ators. We characterize operations in terms of power and
performance on GPUs and FPGAs, apply a set of techniques
to optimize FPGA kernel performance, identify optimal con-
figurations with fast performance models, and develop a
runtime system for dynamic scheduling. Evaluation results
show significant energy savings in DNN training for Hype-
training, without loss in training throughput.
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