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Abstract—Due to the increasing need to process the fast
growing graph-structured data (e.g. social networks and web
graphs), designing high performance graph processing systems
becomes one of the most urgent problems facing systems re-
searchers. In this paper, we introduce GPSA, a single-machine
graph processing system based on an actor computation model
inspired by the Bulk Synchronous Parallel(BSP) computa-
tion model. GPSA takes advantage of actors to improve
the concurrency on a single machine with limited resource.
GPSA improves the conventional BSP computation model to
fit in the actor programming paradigm by decoupling the
message dispatching from the computation. Furthermore, we
exploit memory mapping to avoid explicit data management to
improve I/O performance. Experimental evaluation shows that
our system outperforms existing systems by 2x-6x in processing
large-scale graphs on a single system.

Keywords-Actors; Graph Computing; Bulk Synchronous
Parallel;

I. INTRODUCTION

Graph algorithms are becoming increasingly important

for solving problems in scientific computing, data mining,

and other domains such as social networks and web graphs.

There has been an increasing interest in distributed graph

processing system, such as Pregel [11], GraphLab [10],

PowerGraph [3], GPS [14], Mizan [8]. These distributed

systems allow developers to write applications to process

large-scale graph data with high performance.

Nowadays, although distributed computation resources

are more easily accessible than ever before, however, pro-

cessing large-scale graphs with distributed systems still

remains challenging. In distributed systems, one of the

main problems is load imbalance caused by partitioning

large graphs into small partitions to fit in a single node.

Since some distributed systems are based on the Bulk

Synchronous Parallel (BSP) [18] Model , imbalanced work-

load distribution among computation nodes would affect

the overall efficiency. Another issue is the communication

latency. In distributed systems, different computation nodes

need to exchange data or state via messages to communi-

cate with each other, and the communication latency also

should be considered. Besides, from the user’s perspective,

developing, debugging, and optimizing applications on dis-

tributed systems is difficult because the user needs to be

skilled at managing and tuning a distributed system in a

cluster, which is still a challenging job for the ordinary user.

And distributed systems need many machines in a cluster,

which brings both money and extra energy cost.

Recently, some graph processing engines that focus on

exploiting single machine performance have been proposed

to address the problems of distributed graph processing sys-

tems. Graphchi [9] is a disk-based graph processing engine

running on a single machine. As graph processing often

exhibits poor locality of data access, GraphChi introduces

a novel mechanism called Parallel Sliding Windows (PSW)

to alleviate the issue of random accesses to improve the I/O

performance, and GrapChi shows comparative performance

with most of the representative large-scale distributed graph

processing systems. TurboGraph [4] inspired by GraphChi

focuses on improving parallelism by overlapping the CPU

and I/O processing with a novel concept pin-and-slide. But

it is designed specifically for solid state disks (SSD) to ob-

tain high performance. X-Stream [13] is a graph processing

system that is differentiated by its edge-centric and scatter-

gather model, separating the process into two phases, scatter

and gather. X-Stream supports both in-memory and out-of-

core graphs on a single machine.

Although existing single machine approaches have

demonstrated the effectiveness with reasonable perfor-

mance, they cannot fully exploit the capabilities of modern

multi-core systems. Through experiments, we found that

GraphChi exhibits poor utilization of the CPU on multi-

core systems, while X-Stream shows poor scalability. In

this paper, we present a new vertex-centric graph processing

model based on the observation that, in conventional vertex-

centric programming model, the computing and message

dispatching procedure are executed sequentially [13]. In the

BSP model, the updated value is not visible to its neighbors

until the next superstep, which means the message sending

procedure has no relevance to the computing procedure.

Based on this observation, we present GPSA, a graph

processing system based on actors, which can exploit the

capabilities of multi-core systems as much as possible. We

first decouple the computing procedure from the message

dispatching, with which we can overlap the two processing

procedures and execute them in parallel. In addition, we

leverage the memory mapping mechanism provided by the

operating system to handle I/Os, which not only achieves

better performance but simplifies system design.

We evaluate our system by comparing it with the state-

of-the-art single machine systems including GraphChi and
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X-Stream. Our experiments show that GPSA is about 3x-4x

faster than GraphChi. Compared with X-Stream, we show

that GPSA is not only faster but more scalable than X-

Stream.

The rest of the paper is organized as follows. Section 2

describes the background and our motivations. In section 3,

we introduce the actor programming model. The new BSP

model with actors is introduced in Section 4. In section 5,

We describe implementation details and evaluates our work

by comparing with GraphChi and X-Stream in section 6. At

last, we describe related work in Section 7 and conclude in

section 8.

II. BACKGROUND

In this section, we first introduce the problems in parallel

programming. Second, we present the prominent features

of actor-based programming and brief the Kilim actor

framework. Finally, we review the BSP computation model.

A. Parallel Programming

Since the multi-core has become the main architecture

of the modern computer systems, the way of exploiting

its computation capability is to develop applications using

multi-threaded parallel programming model. This parallel

computing paradigm is based on how to manage and control

concurrent accesses to the shared mutable states, which

requires explicit synchronization to avoid potential concur-

rency bugs such as deadlocks. Manipulating shared, mutable

states via threads makes it hard to write correct and scalable

applications and difficult to predict the behavior of threads

at runtime. Java provides shared memory threads with locks

as the primary form of concurrency abstractions. However,

shared memory threads are heavyweight and suffer from

performance penalties incurred by context-switches.

B. Actor

The actor programming model takes a different approach

to solving the problem of concurrency, by avoiding the

issues caused by shared memory, threads, and locks. Actors

encapsulate data and code, and communicate with explicit

messages. In this model, all objects are modeled as in-

dependent computational entities that only respond to the

messages received, and there is no shared state between

actors. Actors do not change their state until they receive

an explicit message. Actors typically run in parallel. There

are some principles for the actor model: (a) Immutable

messages are used to communicate between actors. (b)

Each actor has a mailbox for the incoming messages. (c)

Messages are passed asynchronously. It means that the

sender does not wait for the message to be received and can

go back to its execution immediately. (d) Communication

between the receiver and sender is asynchronous, which

means that they can execute in different threads.

The standard actor semantics provides encapsulation,

location transparency, fair scheduling, locality of reference,

and transparent migration. These properties enable sim-

plified design and performance improvement, and make

applications scalable. Encapsulation means that an actor

cannot directly access the internal state of another actor, and

the messages transfered between actors should have call-by-

value semantics. Location transparency indicates that the

actual location of an actor has no influence on its name

and one actor does not know the address of another actor.

Fair scheduling means that no actor can be permanently

starved. Transparent migration is defined as the ability of a

computation to move across different nodes including both

code and execution state. With the actor model, it is more

flexible to build highly concurrent and scalable applications.

C. Actors in Kilim

In this paper, we use Kilim as our actor programming

framework. Kilim [16], [17] is an actor-based library written

in Java. In Kilim, Actors are represented by the Kilim type

of Task. Tasks are lightweight threads and communicate

with otherTasks via Mailbox that can accept ”messages”

of any type. Task can send messages and even customize

message types. All the operations performed on actors are

bound via method signatures. For example, The Pausable
signature implies that the bound function can be run concur-

rently. Kilim relies on a static code modifier called Weaver
to realize the actor interface by instrument the Java byte-

code. Pausable methods throwing clauses are processed at

runtime by a scheduler, which is part of the Kilim library

and manipulates a certain number of kernel threads. It is

able to leverage this pool for a higher number of lightweight

threads, which can switch context and start up quite fast.

Each thread’s stack is automatically managed. The actor

model makes it easier and safer to write asynchronous-

acting objects that depend on similar objects.

D. Vertex-centric Graph Processing

Pregel is the first distributed vertex-centric programming

model introduced by Google. As shown in Figure 1, the

computation in Pregel consists of a sequence of iterations

(supersteps). And during a superstep, Pregel invokes the

compute function defined by the programmer for each

vertex, conceptually in parallel. This compute function

specifies the behavior at a single vertex V and a single

superstep S. Furthermore, it can read messages sent to V
in superstep S-1, send messages to its neighbor that will

be received at superstep S+1, and modify the value of V.

In addition, between two adjacent supersteps, a barrier is

imposed to synchronize that all vertices finish processing

messages.

III. MOTIVATION

Actor model is conceptually similar to the vertex-centric

programming model. Actors communicate with each other

via messages. However, existing vertex-centric systems use

thread as the main execution unit,like GraphChi , which

limits the concurrency level. In addition, the vertex-centric

model needs to maintain a large number of messages in

persistent storage for the next superstep, which makes

the single machine approaches hard to scale. Thus, single
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Figure 1: Vertex-centric model Figure 2: New BSP model with actors

machine approaches put a lot efforts on optimizing I/O per-

formance. In this section, we first discuss the inefficiencies

of the vertex-centric model. Then, we motivate the work of

this paper.

A. Inefficiency of Vertex-centric Model
As shown in Figure 1, in superstep S, for a single vertex

V, the vertex-centric model invokes the user-defined method

compute to execute the computing procedure first and then

executes the dispatching procedure to send update to its

neighbors, and finally reaches the barrier. The whole process

is executed sequentially.
First, We observed that messages for the next superstep

S+1 will not be processed in the superstep S until the

computing procedure of the superstep S+1. Those messages

intended for the next superstep have to be stored some-

where, indicating extra memory consumption or extra I/O

operation.
Second, the computing procedure has a strong depen-

dency on the messages, however, the relationship between

two procedures acrosses two supersteps. Considering the

synchronization at the end of each superstep, the processing

seems to be discrete.

B. Motivations
Based on the above observations and analysis, we con-

sider the following principals when designing an actor-

based graph processing system.

• Given the flexibility of the actor programming model

and its similarity with the vertex-centric graph process-

ing, the actor model is a natural fit for our purpose as

compared to the conventional thread-based solutions.

• By exploiting the potential concurrency among mes-

sage dispatching and computing using the actor model,

and the optimization on disk I/Os, we expect perfor-

mance improvement in single machine based graph

processing.

• Actor-based graph processing can not only benefit

multi-core systems but also be directly applicable to

distributed systems, although our focus in this paper

is leveraging actors to accelerate graph processing in

a single multi-core system.

IV. SYSTEM DESIGN

In this section, we first introduce our new BSP model

and the work flow of our system. Then, we analyze the

data access behavior of the new model. Next, we describe

the data organization in GPSA. Finally, we detail how the

operations of message dispatching and value updating are

performed.

A. New BSP Model with Actors

The new model is an asynchronous computation model

by overlapping the dispatching procedure and computing

procedure. Figure 2 depicts the new actor-based BSP model,

in which the vertex passively processed by threads are

replaced by active light-weight actors. And the relationship

between two procedures is placed in one superstep to exe-

cute in parallel. We abstract two kinds of actors according

to the two procedures, which are dispatching actors and

computing actors. From Figure 2, the dispatching actors

send messages to the computing actors and the computing

actors are responsible for processing these messages.

In our actor-based BSP model, the reason why we replace

threads with actors is that actor can not only achieve higher

concurrency but also have more functional semantics than

vertex. First, in traditional vertex-centric model, the basic

execution unit is thread, and it has to keep the integrity of

the execution on a vertex, causing inefficiency as mentioned

above. Second, vertex-centric means that vertex is the main

functional unit and responsible for all the message process-

ing. The real processing of a vertex is scheduled one by one

by threads. However, the computing actor is responsible for

all the message processing and the processing is message-

driven, which provides more flexibility.

As a result, there are two different roles in our compu-

tation model, including dispatching actors and computing

actors as illustrated in Figure 3. Dispatching actors send

messages to compute actors that conduct the real computa-

tion based on the input from the received messages. In our

model, the dispatching and computing actors both are basic

execution unit that is schedulable by the runtime system,

and all the messages communicated among vertices in the

vertex-centric model are now passed via actors.
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Figure 3: Work flow overview

In the traditional BSP model, there always is a superstep

0 that only sends messages but does not process messages at

all. However, in the new model, we can start the processing

of messages at once upon the arrival. And at the beginning

of a new superstep, when an actor needs to send a message,

it does not have to wait for the computation of the current

superstep to finish, because the computation for the current

iteration has already been finished in the last iteration.

B. Data Access Behavior

In our model, we replace vertices with actors, and the

message passing between vertices is transformed into the

communication between actors, which results in different

data access behaviors as compared to the traditional BSP

model. First, the new model does not need to queue a large

number of messages into persistent storage, because the

dispatching and computing actors together form a classical

producer-consumer pattern. The computing actors listen to

the event of message arrival. Upon such an event, the

computing actors will be scheduled to process the incoming

messages immediately.

Second, the vertex values should be accessed both ran-

domly and efficiently. Since for a computing actor it does

not care about how message comes and only concerns

values conveyed by messages and what to do with values.

To process a message, it first needs to obtain the value

of the destination vertex V, and then invoke the user-

defined method compute and update the vertex value. A

message usually contains the destination and value. Actors

respond to messages. However, as messages are delivered

randomly, random access would occur, which should be

avoided to guarantee higher performance. Once actors re-

ceive a message, the value of the specified vertex should

be available not matter where it is stored (in memory or

external storage).

C. Disk I/O

Both GraphChi and X-Stream need to write a large

amount of data to the disk, which necessitate specific

optimizations to improve I/O performance. GraphChi intro-

duces an asynchronous model called Parallel Slide Window

by partitioning the graph into intervals. X-Stream also

presents an asynchronous I/O optimization to achieve better

performance.

The new BSP model takes advantage of actors, and it

does not need to buffer messages to the disk for the next

superstep. The only challenge is that both the dispatching

and computing actors need to access the vertex values

efficiently given the randomness of this operation which

is keen to avoid in other system. We leverage the memory

mapping offered by modern operating systems to manage

I/O requests for vertex values. Furthermore, the edges in

fact are processed by dispatching actors sequentially from

disk.

D. Data Organization

In the new BSP model, it needs to store two copies of val-

ues, because the dispatching and computing actors handle

different values. As mentioned above, we take advantage of

memory mapping to access the vertex values that are stored

in a single file according to numeric ids, and the two copies

of the value are next to each other. The offset of the value

for vertex V can be calculated with |V | ∗ sizeof(V al).

To save memory consumption and improve I/O perfor-

mance, we store graphs in Compressed Sparse Row (CSR)

format. The CSR format arranges the edges in a big array

sorted according to its source vertex id and separated by

a specified symbol. For example, in Figure 4, vertex 0 has

two out-edges pointing to vertex 2 and vertex 3, and the

symbol −1 indicates the end of the edge list of the current

vertex.

In fact, in our model, actors only handle values and

messages. So it is possible to process the original edge

list without a preprocessing procedure. However, it is more

flexible to structure the graph using the CSR format. For

example, in PageRank algorithms, the out-degree of a

vertex matters when generating a message. To improve I/O

performance without an extra lookup, we can store this

information in the CSR format , as shown in Figure 4.
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Figure 4: CSR example

(a) An example graph (b) A CSR file without vertex degrees
(c) A CSR file with vertex degrees

E. Message Dispatching

A message consists of the value and the identifier of the

destination vertex. How to generate message values varies

with different applications. For example, in the PageRank

algorithm, the value of a message is related to both the out-

degree and the vertex value. While it only depends on the

vertex value in the BFS algorithm. Therefore, it is delegated

to the user to implement the logic of how to generate a

message according to the vertex value, out-degree, and even

the edge weight, as shown by the function genMsg() in the

Figure 3. First, if a vertex value has been updated in the

last iteration, it will invoke the user-supplied function to

generate the message value. Next, the dispatcher packs the

value together with an integer identifier (id) and locates the

computing actor that will process this message according to

the destination id. At last, the message is sent to the desired

computing actor.

F. Updating

As shown in Figure 3, after invoking the user-defined

compute() method, the vertex value should be updated. We

store two copies of different values for the same vertex. One

copy is generated during the last superstep, while the other

is the result of the superstep before the last one. Values from

the last superstep will be used in dispatching, and others

will be overwritten by the update operation. In fact, all the

values are stored in a file sequentially; from the perspective

of vertex id, it looks like two columns as shown in Figure

5.

For a computing actor, two main problems may occur.

First, the values in the memory-mapped file are organized

in two columns for each vertex. One column is used for

sending messages, and the other is used for value updating.

After a superstep, the values of the two columns will

become different. So if the computing actor fetches the

value randomly, it will get the wrong data because the

validate value is stored in the message-sending column

actually. So there is a need for the computing actor to

figure out the first message of a vertex and fetch value from

the message sending column then write it into the updating

column.

Second, as mentioned in the last section, if a vertex value

is not updated, the dispatcher will skip it. Messages come

randomly, so it is difficult to identify whether a value is

Figure 5: Value updating

updated or not. Although the computing actor knows the

presence of updating, it has no idea of what to do with it.

In order to convey the updated information to the dispatcher,

we set the highest bit of the vertex value to 1. At first, all the

values will be set. During the computation, if a value has

been updated, the highest bit will be reset to 0. Otherwise, if

a message is the first message of a vertex, a negative value

will be written. After a dispatcher finishes processing, it

will invalidate the value of the current vertex by setting its

highest bit to 1.

For example, in Figure 5, values on the two columns

are initialized to the same using the user-supplied function

with the highest bit set to 1. In superstep 0, dispatchers

read values from the left column, and compute actors update

values on the right column. If a value is updated, its highest

bit is set to 0, like the 0x00000001 and 0x00000002. In

superstep 1, the dispatchers read values from the right

column and computing actors update the left column. In

each superstep, the dispatchers can disable the value by

setting the highest bit to 1.

G. Lightweight Fault Tolerance

Fault tolerance is important to guarantee the reliability of

the long-running graph computation. Although distributed

graph processing systems have built-in fault tolerance sup-

port, in single-machine systems such as GraphChi and X-

Stream, it is complicated (if not possible) to implement fault

tolerance, because of the requirement of recording huge

volume of program states to the disk, which may incur

unacceptable performance degradation.

In GPSA, due to our asynchronous design, in a superstep,

there is always an immutable column, which ensures that

there is always a valid copy of result of the last iteration

stored. If the system crashes within the current iteration,

we can recover the system state from the latest successful

iteration.

For example, as shown in Figure 5, if the processing

fails in superstep 1, and the states of the vertex value file

is shown in Figure 6. In superstep 1, the right and left
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columns are used for dispatching and updating respectively.

Therefore, the right column contains the valid data since the

last successful superstep, and we can recover the system

state from the crashed data file.

Figure 6: Crashed value file.

V. IMPLEMENTATION

We have implemented GPSA in Java based on the actor

framework Kilim.

A. Overview

We assume that the vertices are labeled from 0 to |V |.
GPSA has two types of actors, the manager and the worker,

and consists of four main modules including preprocessing,

manager, dispatcher, and computing worker. The format

of input data is text-based edge list or adjacency graph.

As shown in Figure 3, the graph is first transformed into

the binary form CSR representation. After preprocessing,

the manager starts to initialize the data file that stores

the vertex values by invoking an user-supplied initialize
function, and then the manager assigns a range of vertex

ids to the dispatcher worker and edges to the computing

worker. Third, the manager creates the computing worker

and the dispatchers in turn. At last, all workers enter into

their execution loops.

There are different ways to read the memory-mapped files

to balance load among workers. For example, for conve-

nience, the vertices can be read by the dispatching worker

with a simple mod algorithm. For efficient,we can assign

vertices to the dispatcher worker by the average edges to

ensure that every dispatcher worker sends exactly the same

number of messages. In addition, there are also different

strategies to deliver a message to a specific computing

worker. The easiest way is an average assignment by mod

according the vertex id. In this way, every single computing

worker will have no conflict with others when updating.

However, it may cause the unbalanced workload, because

the new message-driven model is still a BSP model, the

unbalance may be an overhead. To be more flexible, we

provide interfaces for developer to substitute the default

implementation.

B. Preprocessing

Although our system can process the original binary

edge-list input with our new model. We still recommend a

preprocessing phase, with which we can arrange the edges

of a vertex close to each other to reduce the time of reading

data from the memory-mapped file. If the input graph is in

adjacency format, we can just write the destination vertex id
into the memory-mapped file. But with the edge-list format,

an extra sorting operation is needed to transform it into the

adjacency format.

C. The Manager

The responsibilities of the manager actor include initial-

izing values, coordinating the computation, handling excep-

tions, and monitoring workers. Each manager keeps track

of the states of its own workers. As shown in Algorithm 1,

when the computation begins, the manager will send the

workers an ITERATION START command to signal them

to start execution immediately. When a dispatcher worker

finishes all its work in the current iteration, it will inform

the manager with a DISPATCH OVER command and wait

for another ITERATION START command for the next

iteration. The manager is informed to enter into the next

iteration when it receives the DISPATCH OVER from

all the workers, and a COMPUTE OVER command is

then sent to its computing workers, which will reply a

COMPUTE OVER back to the manager. At last, if the

computation is about to end, a SYSTEM OVER command

is issued to kill all the worker actors.

Algorithm 1 Manager Execution Loop

1: procedure EXECUTE(endIte)

2: dispatchers, computers,mailbox, signal
3: counter ← 0
4: currIte← 0
5: while currIte < endIte do
6: for dispatcher ∈ dispatchers do
7: dispatcher ← ITERATION START
8: end for
9: while (signal ← mailbox.get()) ==

DISPATCH OV ER do
10: counter ← counter + 1
11: if counter == dispatchers.length then
12: counter ← 0
13: break
14: end if
15: end while
16: for worker ∈ computers do
17: worker ← COMPUTE OV ER
18: end for
19: while (signal ← mailbox.get()) ==

COMPUTE OV ER do
20: counter ← counter + 1
21: if counter == computers.length then
22: counter ← 0
23: break
24: end if
25: end while
26: currIte← currIte+ 1
27: end while
28: end procedure
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D. The Workers

The worker actors including the dispatching and comput-

ing worker are the basic execution unit, and play the most

important role in the system. Dispatchers are responsible

for reading edge values and sending vertex update messages

to computing workers. The computing workers listen to the

message event. If there are messages arrived, the computing

worker will be notified to get the messages from its own

mailbox and conduct computation on the messages with the

user-supplied compute() method.

Algorithm 2 Dispatcher Execution Loop

1: procedure EXECUTE

2: signal← mailbox.get()
3: while signal! = SY STEM OV ER do
4: if interval! = null then
5: reset()
6: while curoff < endoff do
7: val← getV alue(sequence)
8: if isHighestBit(val) == 1 then
9: skip(sequence)

10: end if
11: if isHighestBit(val) == 0 then
12: vid← readEdge(curoff)
13: while curoff < enfoff do
14: if vid == −1 then
15: break
16: end if
17: msg ← genMsg()
18: dispatch(vid,msg)
19: end while
20: setHighesetBitTo1()
21: end if
22: end while
23: end if
24: notifyManager(DISPATCH OV ER)
25: signal← mailbox.get()
26: end while
27: end procedure

Inside the dispatcher, the data structure called interval
maintains the ids between the first to the last vertex, and the

addresses of the starting and ending offset in the memory-

mapped file. According to the id sequence, the dispatcher

worker can identify which vertex it is processing. The

offset indicates the position of the next edge. As shown

in Algorithm 2, the dispatcher loops until the signal SYS-

TEM OVER is received. After getting the vertex value, the

dispatching work invokes the genMsg method to generate

a new message to be sent to the computing worker, if the

value of the current vertex is updated during the last super

(the highest bit is 0).

The computing worker is responsible for processing mes-

sages and updating vertex values. As shown in Algorithm 3,

upon a message arrival, the computing worker checks if

the message is a signal or a normal message. For a normal

message, the destination id and message value are extracted.

According to the id, it fetches the vertex value from the

memory-mapped file and invokes the compute method. At

last, new value (if any) is written to the memory-mapped

file.

Algorithm 3 Compute Execution Loop

1: procedure EXECUTE

2: msg ← mailbox.get()
3: while signal! = SY STEM OV ER do
4: if msg == COMPUTE OV ER then
5: notifyManager(COMPUTE OV ER)
6: else
7: to← msg.dest()
8: msgV al← msg.val()
9: val← getV al(to)

10: newV al← compute(val,msgV al)
11: if newV al! = val then
12: update()
13: end if
14: end if
15: end while
16: end procedure

VI. EXPERIMENT

We first introduce the testing environment and datasets

used in the experiments. Then, we compare our work with

GraphChi and X-Stream, two state-of-the-art systems, by

measuring the execution time of three representative graph

algorithms and the CPU utilization.

A. Setup

All the experiments are performed on the same machine

equipped with 32 cores (8GHZ Intel i7), 16GB memory, and

1TB disk (7200RPM). The operating system was Ubuntu

12.04. We selected four graphs with different size: the

Google network with 5 million edges, the soc-pokec with

30 million edges, the LiveJournal with 69 million edges,

and the twitter-2010 with 1.4 billion edges, as summarized

in the Table I.

Name Nodes Edges
google 875,713 5,105,039

soc-pokec 1,632,803 30,622,564
soc-liveJournal 4,847,571 68,993,773

twitter-2010 41,652,230 1,468,365,182

Table I: Graphs used in experiment

B. Performance

We compare with GraphChi (0.2.6 C++ version) and X-

Stream using the default configurations. Each test is run

under the same configuration for 3 times and calculate the

average. Because of the different implementation of three

approaches, we choose to compare the average an average

elapsed time of five supersteps. From Figure 7 to Figure 10,
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the performance of the three algorithms on different graph

datasets are depicted.

Result on Google Graph: Figure 7 shows the running

times about the Google graph, and we can see that X-Stream

performs best in finding connected components. While in

running PageRank and BFS, GraphChi outperforms others.

Of all the three algorithms, GPSA is slower than GraphChi

and X-Stream. For PageRank, GPSA is about 4x slower

than GraphChi and X-Stream. For CC, GPSA is nearly the

same with GraphChi, but still slower than X-Stream. For

BFS, GPSA is about 0.2x slower than GraphChi and X-

Stream. This mainly because that the size of Google graph

is very small. Both GraphChi and X-Stream could loaded

the data into memory fully and all the updating happened

in memory without much I/O read or write. Although, for

GPSA, the Google graph could also be loaded into memory

fully, however, GPSA is implemented with JAVA, which is

may slower than GraphChi and X-Stream without program

optimization.

Result on Pokec and liveJournal: Figure 8 and Figure

9 show the results on the Soc-Pokec and soc-liveJournal.

In two figure, we can see that GPSA gains impressive

performance. In PageRank, it is about 0.3x faster than

GraphChi, 8x faster than X-Stream on soc-Pokec and 10x

faster on soc-liveJournal. In connected component, GPSA

is 4x faster than GraphChi and 6x faster than X-Stream

on both soc-Pokec and soc-liveJournal. In bfs, GPSA is

as faster as GraphChi while X-Stream performance worst.

And This mainly because that both GPSA and GraphChi are

vertex-centric programming model, while X-Stream is edge-

centric. In a vertex centric model, it will skip the inactive

vertex, which did not update, including their edges. While

X-Stream iteration over each edges every superstep.

Result on Twitter-2010: Figure 10 shows the results on

the Twitter-2010 graph. In bfs, we are unable to run bfs

implementation provided by Aapo Kyrola on Google Code,

because after preprocessing and reshard GraphChi blocked

there and doing nothing at all. From Figure 10, we can see

that GPSA is 2x faster than GraphChi and 8x faster than

X-Stream in PageRank, 5x faster than GraphChi and 4x

faster than X-Stream in connected component, and 6x faster

then X-Stream in bfs. We believe our significant speedup

is due to the overlapping of two procedure and the saving

from memory mapping. With overlapping, the processing

is performed in parallel, which reduces the average time

consumption of each superstep. Besides, with CSR format

data, we compress twitter graph from 26GB to 6.5 GB,

which could be fully mapped into our memory, while the

GraphChi will have to do reshard and X-Stream will have

to do frequent I/O operation.

C. Usage of CPUs

We investigate the CPU utilization of the three ap-

proaches. The tests were conducted with all 32 cores

enabled. we compare usage of the CPUs in different appli-

cation on the datasets. From Figure 11, we can observe that

X-Stream exhibits excellent CPU utilization with all cores

fully exploited (almost 100%). However, X-Stream fails to

show flexible scalability. Even with the Soc-Pokec that is

a relative small dataset, X-Stream still occupies most of

the CPU time. GraphChi shows the worst CPU utilization

mainly because of its specific focus on I/O optimization

instead of optimizing CPU parallelism. In GPSA, the CPU

utilization varies according to the complexity of workloads
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Figure 11: Usage Of CPUs

instead of compulsorily using the CPU even if the workload

is low like X-Stream. We attribute this to our actor based

model, which can delegate the compute and dispatch task to

different actors, leading to better CPU usage as compared

to thread based approaches.

VII. RELATED WORK

Many scalable graph processing systems have recently

been proposed. We survey some of the most relevant works,

which can be broadly classified into single-machine and

distributed approaches.

A. Distributed Approaches

MapReduce [2] is a programming model for many dis-

tributed applications. It takes a set of Key/Value pairs as

input and produces a set of Key/Value pairs as output

with map and reduce functions. MapReduce can also be

used to perform computation on large graphs, but it could

lead to suboptimal performance due to its iterative nature.

GraphLab is a graph processing system focusing on ma-

chine learning algorithms. GraphLab [10] improves upon

abstractions like MapReduce by expressing asynchronous

iterative algorithm more compact to increase the degree of

parallelism. Pregel [11], a distributed approach proposed by

Google, introduces a vertex-centric computation model for

large-scale graphs. However, as a distributed system, some

issues still remain such as load balancing among clusters.

GPS [14], [5], [19] is similar to Google’s proprietary Pregle,

but it provides new features including extended API with

DSL support, dynamic repartitioning scheme and optimiza-

tions of distributing high degree vertices across compute

node. Mizan [8] is also a Pregel-like system that aims at

optimizing load imbalance. PowerGraph introduces a new

abstraction that is leveraged for distributed graph place-

ment and representation. PowerGraph exposes greater par-

allelism, and reduces network communication and storage

costs. Kineograph [1] is also a distributed system providing

extract timely insights of the graph. As Kineograph takes a

stream of incoming data to construct a continuously chang-

ing graph, it can capture the relationships that exist in the

data feed. In addition, the incremental graph-computation

engine in Kineograph can keep up with continuous updates

on the graph. Other systems such as Pegasus [6] and

Gbase [7] are based on MapReduce and support matrix-

vector multiplication using compressed matrices.

B. Single-machine Approaches

X-Stream [13] is a system for processing both in-memory

and out-of-core graphs on a single shared-memory machine.

X-Stream takes advantage of using an edge-centric scatter-

gather model and streaming completely unordered edge

lists rather than performing random access. Grace [12] is a

in-memory, graph-aware, transactional graph management

system with features such as query, search, and iterative

computations. Ligra [15] is a lightweight graph processing

framework that is specifically designed for shared-memory

multi-core systems. GraphChi [9] is a disk-based single-

machine system following the asynchronous vertex-centric

programming model. GraphChi proposes the parallel sliding

windows (PSW) to handle disk-based large-scale graphs and

avoid random access issues. TurboGraph [4] inspired by

GraphChi focuses on improving parallelism by overlapping

the CPU and I/O processing with a novel concept pin-and-

slide.

VIII. CONCLUSIONS

In this paper, we present a novel computation model

based on actors to process large scale graphs, by decoupling

the message dispatching from computation and leveraging

memory mapping to mitigate the frequent random I/O ac-

cesses. With the new model, we achieve higher performance

with scalable parallelism with thousands of actors, and

better I/O throughout with limited physical memory. Our

work shows the promise of exploiting actor programming

paradigm in large scale graph processing.
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