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Abstract. In this paper, we present a detail study about the immunization of
viruses in Peer-to-Peer networks exhibiting power-law degree distributions. By
comparing two different immunization strategies (randomized and degree-based),
we conclude that it is efficient to immunize the highly connected nodes in order to
eradicate viruses from the network. Furthermore, we propose an efficient updating
algorithm for global virus database according to the degree-based immunization
strategy.

1 Introduction

In the past several years, Peer-to-Peer (P2P) networks have emerged as effective ways
for communication and cooperation among geographically distributed computers. P2P
systems depend on voluntary participation of peers without any centralized control and
hierarchial organization, from which the underlying infrastructure is constructed. In
P2P networks (e.g. SETI@Home, Freenet, Gnutella, Napster), through cooperation of
all peers, tremendous computation and storage resources unoccupied on individual com-
puters can be utilized to accomplish some kinds of tasks jointly. Individual computers
communicate with each other directly without a central point of coordination. P2P sys-
tems are often built at the application level and use their own communication protocols to
form a virtual network over the underlying physical network. The topology of the virtual
network shares some common properties of complex networks in other disciplines of
science, and has a significant impact on performance, scalability and robustness of P2P
systems.

Recently, a large proportion of research effort has been devoted to the study and
modeling of a wide range of natural systems that can be regarded as networks, focusing
on large scale statistical properties of networks other than single small networks. Some
reviews on complex networks can be found in [11]. From biology to social science to
computer science, systems such as the Internet [8], the World-Wide-Web [5], social com-
munities, food web and biological networks can be represented as graphs, where nodes
represent individuals and links represent interactions among them. Despite this simple
definition, these networks often exhibit high degree of complexity due to the wiring
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entanglement during their growth. Researches on these networks have revealed some
commonalities. Specially, many of these networks have complex topological properties
and dynamical features that can not be explained by the classical graph model of random
networks, the Erdos-Renyi model [4].

These diverse networks can be characterized more accurately by small world phe-
nomenon and power-law degree distributions. The first demonstration of small world
effect was introduced by the classic experiment by Stanley Milgram [10], which showed
that people could find a short sequence of acquaintances in order to deliver a message
to each other, and are often referred to as “six degrees of separation”. In networks with
power-law degree distributions, the probability distribution of the degree of the node
is approximately proportional to k−γ , where k is the node degree and γ is a constant.
Such networks are often called scale-free networks. However, the degree distribution in
random graph networks follows a Poisson distribution.

One important characteristic of P2P networks, like some other complex networks,
is that they often show high degree of tolerance against random failures, while they are
vulnerable under intentional attacks [6]. Such property has motivated us to carry out a
study about the virus spreading phenomena and hacker behaviors in P2P networks from
a topological point of view. In our study, we choose Gnutella as our testbed, due to its
large user community and open architecture. Some previous works have been done on the
measurement and analysis of Gnutella network [12, 14, 9], such as bottleneck bandwidth
[14] and search algorithms [1]. But few work has been devoted to investigate the behav-
iors of virus spreading and intrusion from a topological view. The main contributions
of this paper are two-fold: firstly, an optimal immunization strategy is given; secondly,
we propose an efficient information updating algorithm for P2P networks based on the
immunization strategy.

The rest of this paper is organized as follows. Section 2 describes the immunization
model of P2P networks. In section 3, we propose an information updating algorithm for
P2P networks. In section 4, we give our conclusions and point out some directions for
future work.

2 Immunization Model of P2P Networks

Some previous works [1, 6] indicate that P2P networks often display small-world phe-
nomenon and power-law degree distributions. Many topological properties of such
power-law networks are much different from those of networks modelled by random
graphs [4]. One of the most important property is the network resilience, which mea-
sures the network robustness and weakness by random removal or targeted deletion of
vertices in the network. In this section, we first review some materials about the resilience
of P2P network, from which implications for designing immunization strategy of P2P
network will be introduced.

2.1 Network Resilience and Its Implication for Immunization of P2P Networks

There are a variety of different strategies of removing nodes form a network, and different
networks may show varying degrees of resilience to these strategies. For example, one
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Fig. 1. Results for random failures (open square) and degree-based (star) attacks of nodes measured
by the relative size of largest cluster S, the average closeness centrality Cc as functions of the
fraction of removed nodes f in Gnutella network

could remove some nodes randomly in a network, or other nodes with high degrees.
Removal of important nodes may affect the network significantly. With the removing
of nodes from a network, some paths between pairs of nodes is broken. The average
length of these paths increases. Eventually nodes are isolated in different clusters, and
communications between them become impossible. Some real networks display high
degree of robustness against random failures of nodes, but they are also very vulnerable
under attacks of the high degree nodes.

In the following, we illustrate the network resilience of Gnutella network based on
our previous work [6]. To explain the damages caused by attacks and random failures,
we measure two parameters: the relative size of the largest cluster S (defined as the ratio
between the size of the largest cluster and the size of original network) and the average
closeness centrality1 Cc (defined as the average of the closeness centralities of all nodes
in the largest cluster).

As shown in Fig.1, Gnutella network shows high degree of tolerance against random
failures. However, the fault tolerance comes at the expense of attack vulnerability: rapid
decreasing of the relative size of the largest cluster and the average closeness centrality in
early stage. In Fig.1 (b), after the critical point, the largest cluster becomes much smaller
than the initial size of the network, which causes the fallback of average path length in
such clusters and the increasing of Cc correspondingly. A more detailed description can
be referred to [6].

It is intuitive that the attacks on high degree nodes are analogous to the malicious
behavior of hackers in reality. They often make hosts malfunctioning by brute attacks.
In addition, there are other dangers caused by computer viruses or backdoor programs
(programs left by hackers that reside in hosts and can be used to intrude into other hosts

1 Closeness centrality is the measurement of the shortest path length of one node to all others in
the network. See [6] for a more detailed description.
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without breaking down systems). If they are not controlled properly, they will spread to
the whole system. Hence, the problems remained to us are: how efficiently can we stop
the spreading of viruses (in the rest of this paper, viruses stand for both computer viruses
and backdoor-like programs unless explicitly stated)? How can one node inform other
nodes when it detects a virus? Imagine that if one successfully intrude into one host and
spread in a P2P network, DDOS(Distributed Denial of Service) attacks could be easily
performed. These are exactly the topics to be discussed in the following sections.

2.2 Modeling Immunization of P2P Network

One model of the spread of a virus over a network is the SIR (susceptible-infective-
recovered) model [7]. This model assumes that the nodes in the network can be in three
states: susceptible (one node is healthy but could be infected by others), infective (one
node has the virus, and can spread it to others), or recovered (one node has recovered
from the virus and has permanent immunity, so that it can never be infected again or
spread it).

Another widely used model of virus spreading is called SIS (susceptible-infective-
susceptible) model [7]. The main difference with SIR model is that one node can be
infected again without permanent immunity, even though it once recovered from the
virus. Comparing the two models, we know that the SIS model is more suitable for
modeling the spread of computer virus or intrusion in P2P networks, since viruses or
intrusions in the network can be cured by antivirus software or be blocked by intrusion
detection system. But without a permanent virus-checking or intrusion-detecting pro-
gram, they have no way to defend the subsequent attacks by the same virus or intrusion.
Hence, we use SIS model to investigate the effect of virus spreading in P2P networks.

In SIS model, regarding P2P networks as graphs, we represent individuals by nodes,
which can be either "healthy" or "infected", and represent connections between individ-
uals by links, along which the infection can spread. Each node (susceptible) is infected
with rate ν if it is connected to one or more infected nodes. At the same time, an infected
node is cured with rate δ, defining an effective spreading rate λ = ν/δ for the virus.
Without lose of generality, we set δ = 1. Viruses whose spreading rate exceeds a crit-
ical threshold λc will persist, while those under the threshold will die out shortly. This
model can be used to investigate epidemic states of viruses of P2P networks, in which
a stationary proportion of nodes is infected.

P2P networks often exhibit power-law degree distributions [1, 6], similar to other
complex networks. A widely used theoretical model for such power-law networks is the
Barabasi and Albert (BA) model [3], which describes the growth of complex networks
by two basic features: the growing nature of the networks and a preferential attachment
rule. The algorithm of BA model is as following: Staring with a small number (m0)
of nodes, at every step we add a new node with m edges that link the new node to m
different nodes already in the system. The probability that a new node will be connected
to node i depends on the degree ki of node i, such that

∏
(ki) = ki/

∑
j kj . After n

steps, we obtain a network with degree distribution pk(k) = 2m2k−3. In the following,
we use the BA model to deduce a theoretical framework of the prevalence of virus, and
then compare with the real data obtained from Gnutella network [6].
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In order to take into account the different connectivity of all the nodes, we denote
the density of infected nodes with degree k by ρk(t), where the parameter t indicates
the time evolution, and denote the average density of all infected nodes in the network
by ρ = Σkp(k)ρk. According to the mean-field theory as in [13], we have the following
equation:

dρk(t)
dt

= −ρk(t) + λk[1 − ρk(t)]Θ(λ). (1)

The first term in the right-hand side describes the probability that an infected node is
cured. The second term is the probability that a healthy node with degree k is infected,
proportional to the infection rate λ, the probability 1 − ρk(t) that a node with degree
k is healthy and the probability Θ(λ) that a given link point to an infected node. The
probability Θ(λ) is proportional to the average degree 〈k〉 =

∑
k kp(k) of all the nodes,

and it can be written as:

Θ(λ) =
∑

k kp(k)ρk(t)
〈k〉 . (2)

Imposing the stationary condition dρk(t)
dt = 0 when the system is at large times such

that the number of infected nodes are balanced with the number of healthy nodes, we
find the stationary density as:

ρk =
kλΘ(λ)

1 + kλΘ(λ)
. (3)

Using a continuous k approximation, we calculate Θ(λ) for BA model, whose aver-
age degree is 〈k〉 =

∑
k kp(k) =

∫ ∞
m

k2m2k−3dk = 2m, as:

Θ(λ) � m

∫ ∞

m

λΘ(λ)
k(1 + kλΘ(λ))

dk =
e−1/mλ

(1 − e−1/mλ)mλ
. (4)

By combining equations (3) and (4) we have:

ρ � 2m2
∫ ∞

m

k−2λΘ(λ)
1 + kλΘ(λ)

dk =
2e−1/mλ

1 − e−1/mλ
. (5)

The ρ is the stationary density of all infected nodes after time evolution of the
stochastic cycle of SIS model. Equation (5) shows an explicit relationship between the
infection density ρ and the effective infection rate λ, which can be used to evaluate
different immunization strategies in the following section. The detailed calculations of
Θ(λ) and ρ are shown in the appendix.

2.3 Immunization Strategies of P2P Networks

As discussed in section 2.1, the power-law networks exhibit different behaviors under
random failures and intentional attacks, from which two intuitive immunization strate-
gies may be regarded as randomized and degree-based immunizations. In the randomized
immunization strategy, a proportion of nodes randomly chosen in the network are immu-
nized, and these immune nodes will not be infected and do not spread the virus to their
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Fig. 2. Results for randomized and degree-based immunization measured by the density of infected
nodes ρf as a function of the fraction of immune nodes f

neighbors.Accordingly, in the degree-based strategy, nodes are chosen for immunization
if their degrees are greater than a predefined value.

Let us illustrate an example of installing a distributed intrusion detection system
or a distributed firewall in a P2P system according to the two strategies. In both of
the immunization strategies, the spreading dynamical properties can be considered as
follows: suppose that a proportion of nodes are infected in the initial state, the immune
nodes (intentionally protected by the IDS or firewall) in the system do not transmit viruses
as if the links to their neighbors were eliminated, and the non-immune nodes spread
viruses to their neighbors, but at the same time these nodes are cured with probability
δ such as some nodes may install their personal antivirus program (not the same as the
IDS or firewall mentioned above) or update the operating system. After a long time
evolution, according to the mean-field theory, the system comes into balance between
the infected and healthy nodes. In such a process, the two strategies have remarkably
different impact on the density of infected nodes at the critical point of balance.

In the randomized case, for a fixed spreading rate λ, defining the fraction of im-
munized nodes in the network as f , we get the effective spreading rate λ(1 − f), and
substitute it into equation (5), we obtain

ρf =
2e−1/mλ(1−f)

1 − e−1/mλ(1−f) . (6)

Clearly, in the case of degree-based immunization, we can not use equation (5) to
deduce an explicit formula as in the randomized case, but we will use simulations to
compare the difference between the theoretical BA model and the real data of Gnutella
network.

Our simulations are implemented with a fixed spreading rate λ = 0.15, the smallest
node degree m = 3 and the number of nodes N = 34206 the same as the real data
of the topology collected from Gnutella network [6]. Initially a proportion of healthy
nodes are infected in the network. In Fig.2 (a), we plot the simulation results of degree-
based immunization for BA network (line) and Gnutella network (square-line). As the



238 H. Chen et al.

increasing of f , ρf decays much faster in Gnutella network than in BA model, and the
linear regression from the largest values of f yields the estimated thresholds fc � 0.03
in Gnutella network, fc � 0.2 in BA network. The value of fc in Gnutella network
indicates that the Gnutella network is very sensitive to the degree-based immunization,
and the immunization of just a very small fraction (3%) of nodes will eradicate the
spreading of virus. On the other hand, in Fig.2 (b), the simulation results of randomized
immunization are plotted for Gnutella Network (square-line), which is in good agree-
ment with the theoretical prediction (line) by equation (5), except for a larger value of
fc � 0.7 compared with the value fc � 0.64 of BA network. Based on the analysis
above, it is evident that the degree-based immunization is really better than randomized
immunization, which also inspires us designing an efficient immunization algorithm for
P2P networks in the next section.

3 Efficient Immunization Algorithm for P2P Networks

Since the degree-based immunization is more effective than randomized immunization,
one problem arises naturally that how efficiently we can inform other nodes when one
node finds a virus in real networks. Returning to the example discussed in section 2.3,
we consider that in a distributed IDS or firewall system for P2P network, if one node
detects an intrusion or a virus, how can it transfer the information to others to update
their local database in an efficient way?An intuitive solution is that it transfers the update
information by visiting the neighbor with the highest degree, followed by a node with
the next highest degree, since the immunized nodes are always with high degrees. In
such a way, one can walk down a degree sequence all having high degrees. First, we
formulate the highest degree in the network as a function of the network size.

Generally, the highest degree kmax of a node in a network depends on the size of
the network. In [2], Aiello et al. assumed that the highest degree was approximately
the value above which there was less than one node of that degree in the network on
average, i.e, npk = 1. This implies that for the power-law degree distribution pk ∼ k−γ ,
kmax ∼ n1/γ . However, this assumption is not accurate in many real networks, where
there are nodes with significantly higher degrees than this in the network.

Given a specific degree distribution pk, the probability that there are m nodes with
degree k and no nodes with higher degree is

pkmax
=

(
n

m

)

pm
k (1 − Pk)n−m, (7)

where Pk =
∑∞

k′=k pk′ is the cumulative probability distribution and n is the number of
nodes in the network. Hence, the probability Πk that the highest degree in the network
is k is

Πk =
n∑

m=1

(
n

m

)

pm
k (1 − Pk)n−m = (pk + 1 − Pk)n − (1 − Pk)n, (8)

and the expected value of the highest degree is kmax =
∑

k kΠk.
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The probability Πk tends to zero for both small and large values of k. Thus, in most
case, a good approximation to the mean value of the highest degree is given by the modal
value. Based on equation (8), we find that the maximum of Πk occurs when

dΠk

dk
= (

dpk

dk
− 1)(pk + 1 − Pk)n−1 + pk(1 − Pk)n−1 = 0, (9)

where dPk

dk = pk. Assuming that pk is sufficiently small for k ≥ kmax that npk � 1
and Pk � 1, we can write equation (9) as

dpk

dk
= −pk[(

1 − Pk

pk + 1 − Pk
)n−1 − 1]

= −pk[(
1

pk + 1
)n−1 − 1] � −np2

k, (10)

where 0 < (pk + 1 − Pk)n−1 < (1 − Pk)n−1 < 1.
For BA model, the probability distribution of degree is pk = 2m2k−3. Substituting

it into equation (10), we have

kmax �
√

2m2n

3
. (11)

As described above, the node that detected an intrusion or a virus transfers the in-
formation to other nodes through a degree sequence in which all the nodes have the
highest degree. For simplicity, suppose that the degrees of the nodes in the sequence all
approximate to kmax, then the number of steps needed to transfer the information in the
network of size n is

s =
n

kmax
�

√
3n

2m2 . (12)

We performed simulations of the real data of Gnutella network with a power-law
exponent γ = 2.0 [6], and compared the simulation results with the theoretical prediction
of BA network in equation (12). The number of nodes range from N = 103 to N = 104.

Fig. 3. The number s of steps needed to transfer information through high degree nodes as a
function of the network size N
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Fig.3 shows that the algorithm of transferring update information based on high
degrees in Gnutella network is as efficient as the prediction of the theoretical BA model.
We need only s = 11 steps to update all high degree nodes in Gnutella network with
N = 1000 nodes, and s = 36 steps in Gnutella network with N = 10000 nodes. The
discrepancy between the BA network and the Gnutella network is mainly due to the
difference of power-law exponent of γ = 3.0 in BA network and γ = 2.0 in Gnutella
network. Hence, in implementing a real distributed IDS or firewall system, we can update
the global information effectively utilizing the highly connected nodes.

4 Conclusions

In this paper, based on the simple SIS model, we analyze the influence of virus spread-
ing on P2P networks with two different immunization strategies namely randomized
and degree-based immunization, and performe theoretical modeling and real data sim-
ulations. The results show that the degree-based strategy is more efficient than the ran-
domized strategy, which also motivate us to design an effective information transferring
algorithm for updating global virus databases. These methods are highly valuable in
the implementation of real systems such as distributed IDSs or firewalls. As mentioned
in the text, the immunization model is not flexible enough to analyze both randomized
and degree-based strategies, hence, our future work is to improve the model to make it
suitable for the analysis of both strategies.
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A Appendix. Calculations of Θ(λ) and ρ

Θ(λ) =
∑

k kp(k)ρk(t)
〈k〉 �

∫ ∞

m

2m2k−3k2λΘ(λ)
2m(1 + kλΘ(λ))

= m

∫ ∞

m

λΘ(λ)
k(1 + kλΘ(λ))

dk

= mλΘ(λ)
∫ ∞

m

(
1
k

− λΘ(λ)
1 + kλΘ(λ)

)dk

= mλΘ(λ)([ln k]∞m − [ln(1 + kλΘ(λ))]∞m )

= mλΘ(λ)( lim
M→∞

ln
M

1 + MλΘ(λ)
− ln

m

1 + mλΘ(λ)
)

= −mλΘ(λ) ln
mλΘ(λ)

1 + mλΘ(λ)
⇒

− 1
mλ

= ln
mλΘ(λ)

1 + mλΘ(λ)
⇒ Θ(λ) � e−1/mλ

(1 − e−1/mλ)mλ
.

ρ = Σkp(k)ρk �
∫ ∞

m

2m2k−3kλΘ(λ)
1 + kλΘ(λ)

dk

= 2m2λΘ(λ)
∫ ∞

m

(
1
k2 − λΘ(λ)

k
+

(λΘ(λ))2

1 + kλΘ(λ)
)dk

= 2m2λΘ(λ)([−1
k

]∞m − λΘ(λ)[ln k]∞m + λΘ(λ)[ln(1 + kλΘ(λ))]∞m )

= 2m2λΘ(λ)(
1
m

+ λΘ(λ) lim
M→∞

ln
1 + MλΘ(λ)

M
+ λΘ(λ) ln

m

1 + mλΘ(λ)
)

= 2m2λΘ(λ)(
1
m

+ λΘ(λ) ln
mλΘ(λ)

1 + mλΘ(λ)
)

= 2m2λΘ(λ)(
1
m

− λΘ(λ)
1

mλ
) (by substituting Θ(λ) into the above equation)

� 2mλΘ(λ) (the lowest order of λ is remained)

=
2e−1/mλ

(1 − e−1/mλ).
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