Mining Frequent Attack Sequence in Web Logs

Hui Sun, Jianhua Sun®™, and Hao Chen

College of Computer Science and Electronic Engineering,
Hunan University, Changsha, China
{huisun, jhsun,haochen}@hnu.edu.cn

Abstract. As a crucial part of web servers, web logs record information
about client requests. Logs contain not only the traversal sequences of
malicious users but the operations of normal users. Taking advantage of
web logs is important for learning the operation of websites. Further-
more, web logs are helpful when conducting postmortem security analy-
sis. However, common methods of analyzing web logs typically focus on
discovering preferred browsing paths or improving the structure of web-
site, and thus can not be used directly in security analysis. In this paper,
we propose an approach to mining frequent attack sequence based on
PrefixSpan. We perform experiments on real data, and the evaluations
show that our method is effective in identifying both the behavior of
scanners and attack sequences in web logs.

Keywords: Log analysis - Web security - Web attacks - Sequential
pattern mining

1 Introduction

The web is an important part of the Internet, and it becomes the largest publish-
ing system in the world with its pragmatic natural attributes. With increased
information sharing through network, attackers are attracted by the range and
diversity of information, which causes the continued increase of attack frequency.
They either endeavor to compromise the corporate network or the end-users
access to the website by subjecting them to drive-by-downloading [13]. Among
all these kinds of attacks, the attack for web servers is the most serious one with
a variety of different ways, such as distributed denial of service and weak pass-
word guessing. Imaging that if a malicious user has intruded into a server that
runs a database and network operating system, it would be relatively easy to
obtain private information in the database or shutdown the network for a while.
Under this circumstance, it is necessary to analyze the accident by finding attack
footprints from log files, because the web logs contains the original information
about client requests and run-time errors.

An entry will be added into access log when user request to the server, and
the entry records client request information such as the time of request, client
IP address, HTTP method, and so on. As one type of request users, attacker
intrusions to server also be recorded. Thus, in web server’s daily operation and

© Springer International Publishing Switzerland 2016
X. Huang et al. (Eds.): GPC 2016, LNCS 9663, pp. 243-260, 2016.
DOI: 10.1007/978-3-319-39077-2_16

244 H. Sun et al.

security emergency response, web logs are always used to evaluate the risks of
website. On the other hand, webmasters need to carry out investigation and
evidence collection to find attackers by analyzing access log of the last few days,
and then reconstruct the attack flow. A common method is using commands
like “grep” (a tool using regular expressions to search text). In this way, certain
keywords are searched in logs, then the records that contain specific keywords
will be analyzed manually. However, this manual analysis is time-consuming and
the analyzer is also expected to have a thorough knowledge on web security. Of
course, there still exist many automatic analysis tools for web logs. For example,
Piwik [3], Kibana [2], AWStats [1] and Splunk [4] are free open source software
to analyze web logs. With these tools, we can perform searching, visualization,
analyzing, and many other operations on web logs efficiently. The bad news is
that these tools can just achieve some simple statistical data collection of deep
analysis. Therefore, with data mining technology some researchers analyze user
access patterns, which are called Web Usage Mining.

The data source of web usage mining mainly comes from access logs in web
servers. Commonly, it is used to discover usage patterns and understand the
need for web-based applications [5]. And web usage mining is widely used by
companies [8,11,16] to improve service quality, to provide personalized services,
and to find potential users. Actually, log mining in security plays a decisive role
for webmasters and companies. It can be easier to know what the attacker is
interested in, and whether O-day is exploited in large-scale. However, web usage
mining has been rarely applied to the field of web security. This paper focuses
on the method of sequential pattern mining, which aims to learn the frequent
attacking sequence from records logged by web servers.

In this paper, we make the following contributions:

— With sequential pattern mining, we can obtain frequent attacking sequences.
In this paper, a method for mining frequent attacking sequences is proposed,
which can not only reflect the attacker’s intension, but also explore the com-
mon sequences of different security scanners.

— We distinguish scanners from malicious man-made attacks. The typical way
of attacking a website is to first detect vulnerabilities of the website with
scanners. Because the different behavior between the scanners and the man-
ual requests, it is necessary to distinguish the man-made attack from the
automatic tools before mining to make sure the accuracy of mined sequences.

— We explore the regular patterns of scanners. Scanners are typically black-box
tools. It is beneficial to understand the internal working principle by mining
attacking patterns of vulnerability scanners.

— We visualize the attack sequence with flowchart. Frequent sequence mining
can help administrators to understand the attacker’s behavior, which also can
be utilized to display attacks sequence. The flowcharts are much intuitive for
human investigation and can help webmasters to identify vulnerabilities to
take further actions to protect the website.

Mining Frequent Attack Sequence in Web Logs 245

2 Background and Motivation

This section presents an overview about the method of web usage mining and
motivates the design of mining sequential attacking patterns. In addition, some
representative web vulnerabilities that are often exploited in web applications
are introduced in this part, which can help understand the typical payloads for
each vulnerability.

2.1 'Web Usage Mining

Generally, the data source of web usage mining comes from client click stream
(always web server logs). The process is composed by three phases: the pre-
processing, the pattern discovery, and the pattern analysis [12,14]. The pre-
processing stage aims to clean up the raw data and transform the logs to what
is more accurate and suitable for data mining. Transformed data are processed
in the pattern discovery stage with specific data mining algorithms in order to
find common rules. And in the final stage, useless patterns are filtered out.

Data Collection and Preprocessing. The raw documents are collected in this
stage. The data for web usage mining usually come from three parts: server level,
client level and proxy level. Among them, the server level is the most convenient
for collection, including web log file, web page content and the website structure,
etc. However, the collected data can not be used for modeling directly. It must
be preprocessed to make sure the modeling in later steps more reliable. Ideally,
the data should be in the format that just contains the page views of each
user session. In general, the data preprocessing task involves data cleaning and
filtering, user and session identification, and path completion [10,15,17].

— Clean up data. Filtering out error requests which are considered useless
for understanding user actual behaviour. And then cleaning up the auto-
matic requests (e.g., the requests for graphics files) which are not specifi-
cally requested by user. Another example for ineffectual requests in accessing
records is web bots. Behaviour of web bots differs from human and not inter-
ested for web usage mining.

— User identification. The task of this part is to define each user, which help to
implement access frequent sequence mining. The free-form structure of the
Internet means that most users accessing on most websites are anonymous.
The existence of local caches, corporate firewalls and proxies make it more
difficult to identify each user. For instance, users who use the same proxy may
access the site at the same time. Even more, the same user may request the
web server on different machines or browsers. In order to improve the accuracy
of user identification, lots algorithms have been proposed [6,18], while these
algorithms have an adverse effect on realisation. Usually, web usage mining
distinguishes each user by their IP address and operating system.

— Session identification. For each visitor, log files record which pages are
requested, the order of the requests, and the duration of each page view.

246 H. Sun et al.

Session identification divides each user’s requests into many parts, which can
reflect user continuous request to website [20]. A key factor for the quality of
web usage mining is the real scale of session identification.

— Perform path completion. Not all pages requested by agent are recorded in log
file. Just like when “back” button is pressed to return the page viewed before.
The browser will go back to the page that has been cached locally rather than
send a request to the web server again, and then the web logs will miss the
record. This part tends to complete the paths which were requested by users
but not recorded in the web logs [9].

Pattern Discovery Stage. The purpose of this stage is to establish the com-
mon patterns for users. The techniques in the pattern discovery stage include
statistical analysis, clustering and classification algorithms, frequent itemsets and
association rules, and sequential patterns. Among the above algorithms, statis-
tical analysis, which is used to discover frequent access pages or average view
time of a page, aims to improve the performance of the web system. At the
same time, frequent itemsets and association rules also benefit to find out the
frequent access pages or improve the struct design for the website. Clustering
and classification algorithms divide the objects into multiple classes, and it is
usually believed to be beneficial to market segmentation or information retrieval.
Common sequential patterns expose users’ visit patterns that reflect the access
trends.

Pattern Analysis Stage. Not all patterns uncovered in the pattern discovery
stage will be considered useful for analyzers. This stage filters out the rules and
patterns that are common sense patterns. Hence, in this stage, we need to trans-
form the patterns to comprehensible forms according to the actual application
and keep the interesting, useful, and actionable patterns.

2.2 Web Application Security

According to numerous studies, the preferred method for attacking business’s on-
line assets is to exploit the vulnerabilities of their web applications. Vulnerability
in web application is a security weakness that allows an attacker to bypass
security checks or break system assurance. In the following, we discuss some
common web vulnerabilities.

SQL Injection. In SQL injection, malicious codes are inserted into strings that
are later passed to an instance of SQL Server for parsing and execution, which
aims to get the higher authorized access in the database (e.g. administrator
right to the database). For example, when users’ input is not checked strictly,
the request containing malicious codes will be submitted to the server, then the
malicious statements are parsed into SQL statements to execute. SQL injec-
tion may lead to security risks such as the leakage of sensitive information, the
modification and deletion of user data.

Cross-Site Scripting (XSS). XSS enables attackers to inject client-side script
into web pages that will be viewed by other users. Most experts distinguish XSS

Mining Frequent Attack Sequence in Web Logs 247

flaws into non-persistent and persistent. The further division of these two groups
is reflected XSS, persistent XSS, and DOM-based cross-site. In reflected XSS,
the bait is an innocent-looking uniform resource identifier (URL), pointing to a
trusted site but containing a XSS vector. The injected script will be executed
by the victim’s browser when the URL is clicked. While in persistent XSS, the
data provided by attackers are saved by the server, and permanently displayed
on “normal” pages returned to other users in the course of regular browsing.
The DOM-based cross-site neither need the parse of web server nor the response
to the malicious code. It is triggered by the DOM parser of the client browser.
A cross-site scripting vulnerability may be used to steal the session cookie and
bypass access controls (such as the same-origin policy).

Directory Traversal. It exploits insufficient security validation of users’ input
file names that contain “/”, so that malicious users can achieve directory jump
to traverse to parent directory on the server. The goal of this attack is to grant
an application the access to files that are not allowed by the default privilege.
In general, the path /etc/passwd” that contains the password is a common file
in Unix to demonstrate directory traversal. In order to detect this vulnerability,
users always restructure the URL that contains sub-strings like “../” or its
escape character “z5c./”.

File Inclusion. The occurrence of this vulnerability is due to that the developers
insert reusable code into a file openly and include it when these functions are
called. Because there is no strict filtering on the entry function when calling the
public file, the client can submit malicious functions to make the server execute,
and achieve evil purposes.

Command Execute. A special URL constructed by attackers, and the URL
contains commands expected to be executed by the server. It exploits that the
server doesn’t check strictly for those functions to be executed, and achieve the
goals of getting server information, executing command or some Java code of
server system, and uploading file to the server.

2.3 Motivation

It is widely reported that more than half of the security breaches target web
applications, which indicates the importance of strengthening the security level
of web applications. Clearly, organizations need a way to replace fragmented
and manual penetration testing. There is a great demand for automated tools,
so they can protect their global application infrastructures.

Based on the background of web application security and web usage data
mining, we propose to mine sequential patterns for the web logs from the per-
spective of managing website more securely. Concretely, we intend to obtain
common behaviors of attackers or black-box scanners. Given that, we need to
find the potentially malicious records from the logs by matching common attack-
ing payloads, and then locate the vulnerabilities or reveal the connection between
different vulnerable pages.

248 H. Sun et al.

3 Design and Implementation

In this section, we present the design and implementation of our system, and
the main components and data flow is shown in Fig.1. Similar to web usage
mining, firstly, we collect the raw data that are mainly extracted from access
logs. In addition, we collect payloads for each vulnerability. Secondly, different
from common web usage mining, we remove normal requests from the logs and
retain the records that may contain abnormal behavior. Thirdly, we distinguish
users and their sessions in logs. When we identify each user, we divide the users
into two categories: black-box scanners and malicious users. Then, we transform
the target data into sequence database. After that, we use the algorithm Pre-
fixSpan to mine frequent attack sequence patterns from the sequence database.
At last, visualizing attack sequence be realized by the dot language, before that
we maximized the sequences generated in the mining stage.

3.1 Data Collection

As depicted in Fig. 1, this is the first task before we process the web data. In this
section, for vulnerabilities we illustrate what payloads are, and then we present
some real payloads for certain vulnerability.

Payload Collection. Our intention is to discover abnormal behaviors from
recorded requests. Hence, before preprocessing, a reference should be indicated
to tell the system what kind of log entries contain possible attacks. Essentially,
besides the original web data, we also need to collect payloads for real exploits.

Definition 1. The payload of each vulnerability is the most substantive charac-
teristic string or statements contained in the request URL, with which we can
determine that the request attempts to exploit the vulnerability.

Some common web vulnerabilities have been demonstrated. For example,
we can confirm that XSS exploit is attempted when the string “<”’ <img
sre=javascript:” appears in the URL. Usually, the payloads of the SQL injection

B Clean log file
User Session Sequence
Web Server Log file Identification Database
y
- Match URL Identification User ScanheiSession SEEUEREs
Payload Identification Database
Stagel. Data Collection Stage2.Data Preprocessing
Visualization Maximized Sequenc‘e‘l gatierny Trans to number
Sequence Mining
Stage4.Pattern Analysis Stage3.Sequential Pattern Mining

Fig. 1. The main process of frequent attack sequence mining.

Mining Frequent Attack Sequence in Web Logs 249

DirectoryTraver:\..\..\..\..\..\..\ XSSAttack:>'><script>
DirectoryTraver:/\..\..\..\..\ XSSAttack:>"><script>
DirectoryTraver:/???2?/2222/22?22/?2?222/22?? XSSAttack:</textArea><script>
DirectoryTraver:/..%5c..%5c..%5¢..%5c..%5¢.. XSSAttack:%3cimg%20src%3

DirectoryTraver:/..%5c../ XSSAttack:>"'><img src="javascript:alert
DirectoryTraver:/\x5c\x5c../ XSSAttack:" style="background:url(javascript:
DirectoryTraver:.\../../.\ XSSAttack:--><script>alert

Fig. 2. Part of payloads of XSS attack and Directory traversal.

attack contains basic database operations such as strings that contain “select”,
“unton” in the URL. We gather many other payloads and corresponding attack
vectors, and store them in a single file. Figure2 shows some web application
attack payloads that we collect.

3.2 Data Preprocessing

The results of preprocessing will be used for data mining algorithm directly.
Therefore, the consequences, whether good or not, such as the accuracy of user
identification and session identification, will straightly affect the mining outcome.
This section mainly introduce the procedure of data clean-up, user and session
identification method. It is worth mentioning, in the stage of user identification,
we will divide users into malicious user and scanners in order to improve the
accuracy of analysis.

Cleaning Up Log File. It is well known that if the type of web servers is
different, then their log formats are also different. The most widely used free
web server in Unix and Linux platform is W8C, Nginz and Apache Server, and
IIS is the native web server in Windows platform. Factors like security, logs
and statistics, virtual host, proxy server, and integrated applications, should be
considered when choosing a web server. Each request from a client as well as the
response from the server is recorded in the log file automatically. So an entry
in the log file can reflect a particular action performed by the user. Meanwhile,
the format of log file is often customizable, and each field is separated by spaces.
A sample web log of Nginz is shown in Fig. 3.

— Remote host field: This field is located in the first parts commonly, and it
records Internet IP address of the remote host.

— Author user field: It provides the authenticated user information. If this field
is not a hyphen, it means that a client has gained access to directories which
are password protected.

124.133.7.42 — - [04/Aug/2015:13:29:44 +0800] "GET /search?c=%3A%E4%B8%AD%ES%IB%BD& t=1
HTTP/1. 17 200 12189 “http://www. baidu. com/” "Mozilla/5.0 (Windows NT 10.0; WOW64)
AppleWebKit/537.36 (KHTML, like Gecko) Chrome/43.0.2357.130 Safari/537.36” "=

Fig. 3. A log record.

250 H. Sun et al.

— Date/time field: This shows time zones and access time.

— Http request field: The Http request field consists of information that client’s
browser has requested to the web server. Essentially, this field may be parti-
tioned into three areas: the request method, the uniform resource identifier,
and the protocol.

— Status code: Obviously, not all client requests has succeeded, the status code
field provides a three-digit response from the web server, indicating whether
the request was successful or not, or if there was an error, we could know the
error type. For example, 200 is OK, 304 is not-modified, etc.

— Transfer Volume (Bytes) field: This field expresses the size of the file sent by
the web server to the client. Only when the GET request status code is 200,
the number has a positive value.

— Referrer field: Listing the URL of the previously visited site that are linked
to the current page.

— User agent field: This field is used to store client’s browser and system infor-
mation.

The log formats can be tailored to suit individual requirements. Certain
fields might be chosen using the configuration file. We need to be aware of the
structure of the log, and parse the string to IP, request time, method, URL, state
and client field. The most common URLs are based on Http or Https protocol,
and it is the breakthrough point of web security. Varieties of security threats are
exploited by means of modifying the URL before sending requests to the server.
It may cause a security problem if any level from the client to the server does not
conduct filtering. According to this, we can find clues about attack by checking
the record of the URL field.

After analyzing the structure of the log file, we can get the strings of attack
payloads to match the URL, and then determine whether the user exhibit an
attack behavior. Unlike common web usage mining whose data cleaning removes
the exception requests and static requests, we remove normal requests, and retain
the exceptional ones. More concretely, in this phase, if any payloads are contained
in the URL, no matter which type of attack it belongs to, we store the record to a
file suffixed with “.attack” and the string is reordered as access time, IP, browser
and system of client, URL and status code. At the same time, we also maintain
the type of each attack records. Figure 4 illustrates the segment of attack records
that are generated after cleaning log files. Before user and session identification,
the URL we got, is the raw request information of attacker, which might contain
the string that is constructed by the attacker. And it is useless for analyzing the
attack path, so we need to clean up the URL. We focus on the actual path that
the attacker requests. In this step, we also transform the raw URL to the page
it belongs to.

User Identification. Given that our goal is to get the user’s common access
sequence, we need to distinguish each user, and find the common attack behavior
of them. The main task of user identification is to find out each attack who visits
the website according to IP, system, browser and other information remained in
the log after preprocessing. There are many effective algorithms proposed to

Mining Frequent Attack Sequence in Web Logs 251

Attack Time P Client Information Vulnerability URL Response| Bytes
Jutil/
mozilla/5.0 (windows ?
26/jun/2015 | 61.185. | g) W(Ows4) k:;:_co;je/'p/hp/' t/y
:15:20:50 194.159 gecko/20110613 DirectoryTraver o, 200 (941391
firefox/6.0a2 ./..]..]etc/
passwd%00
mozilla/5.0 (windows /servlet/
26/jun/2015 61.185. .
nt 6.1; wow64) %0arefresh:0;u
.15:20- XSSAttack ! 200 (941413
115:20:51 194.159 gecko/20110613 rl=javascript:pr
firefox/6.0a2 ompt(1)%0al
mozilla/5.0 (windows Jsdk/.f)]]
26/jun/2015 [113.247.2| nt 6.1; wow64; A ddd T
:15:20:51 22.22 rv:6.0a2) gecko/ DirectoryTraver 7 Jete) 400 |941568
20110613 firefox/ passwd
6.0a2
mozilla/5.0 (windows J2page=./.]..]
26/jun/2015 |113.247.2| nt6.1; wowb4; Port S]]
:15:20:52 22.22 rv:6.0a2) gfecko/ DirectoryTraver etc/ 200 |941581
20110613 firefox/ passwd%00.jpg
6.0a2
mozilla/5.0 (windows /?search
26/jun/2015 |113.247.2| nt6.1; wow64; =<script>alert(1
:15:21:01 22.22 rv:6.0a2) gecko/ XSSAttack)</script> 200 |941572
20110613 firefox/
6.0a2
mozilla/5.0 (windows /[?search
26/jun/2015 |113.247.2| nt6.1; wow64; =%3cscript%3e
415:21:01 22.22 rv:6.0a2) gecko/ XSSAttack alert(1) 200 (941582
20110613 firefox/ %3c%2fscript%
6.0a2 3e

Fig. 4. The attack record of matching.

achieve user identification. The first general algorithm identifies different users
by using the field of the IP and user agent. Others are based on cookies or
extended property of the log. This method can distinguish users who are in
the same proxy server effectively, and it provides higher accuracy. However, it
requires both the server and the client to support cookie. In our implementation,
we adopt the first method.

In daily operations of the website, besides suffering man-made attacks, the
server is also scanned frequently by black-box testing tools. The man-made
attack is different from automated tools. The records for scanners are not
removed in the clean-up stage. The accuracy of the model mined from the data
will be reduced if the two types of users mentioned above are mixed. Therefore,
how to differentiate human attacks from scanners is also considered in order to
improve the accuracy of analysis. The following are some methods that can be
combined to make this distinction.

— Fingerprint of scanner. Different scanners usually have their own character-
istics. A specific field such as the name of the scanner might be added into
the request header.

252 H. Sun et al.

— Trigger rules. Recording the times of users intercepted by the Web Application
Firewall in a certain period. If the number is larger than the threshold allowed,
you can assert the user is a scanner.

— Setting hidden links. The hidden links are invisible, and couldn’t be clicked.
While crawlers in scanners always catch all links including the hidden ones
to detect vulnerabilities, so the hidden links are in the list of their requests.
Especially, scanners based on Webkit will test the hidden links automatically
to crawl more page to test. We can set a hidden link to induce scanners to
request the link, which can help distinguish scanners from users.

— Cookie implantation. When the measured time under the condition of secu-
rity rules triggered is lager than the threshold, a cookie is sent to the user.
The client should carry the cookie when it requests the server next time,
while most scanners can not achieve this operation. If the user requests next
time without the cookie, we believe this user is a scanner. The advantage of
cookie implantation is that it is more direct to find the scanner according to
the next request.

— Response error ratio. This method is implemented by calculating the pro-
portion of server response error in a certain duration, hence, it can detect
sensitive directory scanning. Scanners based on dictionary file send request
to each URL listed in the dictionary file, and then determine whether the
path exists by getting the response returned by the server. By counting the
number of return status of 404 for each user, we can ensure the user is a
scanner when the number reaches a certain threshold.

Because the log data that we collect is in fixed format, considering the practi-
cal operability, we use the fingerprint approach to identifying scanners. In addi-
tion, we use the response error ratio method. We also consider if the number
of attacks exceeds a certain frequency in a period. Combining these methods
mentioned above with counting the number of response in the referrer field that
are not 200, we can determine whether the user is a tool.

3.3 Attack Sequential Pattern Discovery

After preprocessing, two sequence databases are generated. One is the data-
base of ordinary attackers, and the other is for scanners. We can conduct data
mining algorithms on the two sequence databases separately to get the frequent
sequence. In order to reduce the computational overhead, we convert each attack
string to a corresponding number. Then, the pattern mining operation is per-
formed based on these digital numbers.

Sequential pattern mining aims to find valuable patterns in a sequence data-
base, which is based on a given mining support. More concretely, with mining we
can find out all the frequent sequences for a given sequence database and min-
imum support threshold, and then remove the sequences that are duplications
or contained by others. The Sequence is an ordered list of itemsets (A collection
of one or more items, it can be expressed as s = (z1,x2, T3, ..., Ty), where xj

Mining Frequent Attack Sequence in Web Logs 253

represents an item), like S = (s1,82,83,...,58,), where s; represents an item-
set. The length of sequence, |s|, is the number of itemsets in the sequence. And
the Support of a sequence W is defined as the fraction of sequences that con-
tain W. Frequent sequence is a subsequence (A subsequence is that a sequence
< ap,asg,...,a, > is contained in another sequence < by, ba, ..., by > (m = n) if
there exist integers i; < is < ... < i, such that a1 C b;,, a2 C by,, ..., an, T b;,)
whose support is > minsup.

Various sequential pattern mining algorithms have been proposed. Algo-
rithms like AprioriAll [22], AprioriSome [21], GSP [22] are based on Apriori
property to find the patterns in layers. The FreeSpan [7] and PrefixSpan are
based on pattern-growth. The PrefixSpan is always preferable due to its per-
formance and efficiency in large sequence databases, which is because that it
generates less projection databases and less subsequence connections.

PrefixSpan. PrefixSpan is a kind of sequential pattern mining algorithm based
on database projection, whose performance is better than GSP and AprioriAll.
With the ability of handling large sequence databases, it is more widely used
than other algorithms.

The Prefiz in PrefixSpan means that: suppose that all the items are listed

in alphabetical order. Given a sequence o =< ej,es,...,e, > (where each e;
corresponds to a frequent element in S), and a sequence 3 =< e},e},..., e >

(m < n) is called a prefix of « if and only if three conditions are satisfied:
(1) e = e;(1 < m—1), (2) e, C en, and (3) all the frequent items belong

K3
to (em — €,) are alphabetically after those in e,,. Conversely, Suffiz is that

given a sequence o =< eq, €a,...,e, > (where each e; corresponds to a frequent
element in 5), let 8 =< ef,eh,..., e, _1,€,, > (m < n) be the prefix of a.

Sequence v =< e emi1,...,e, > is called the suffix of a with regards to
prefix 3, denoted as v = a/3, where ¢!/, = (e, — e€l,)?.

PrefixSpan uses the divide-and-conquer strategy to generate more projected
databases (let @ be a sequential pattern in a sequence database S. The a-
projected database, denoted as S |, is the collection of suffixes of sequences
in S with regards to prefix «), and the sizes of these databases are smaller than
the raw sequence databases. The basic idea is to find out the frequent items
whose frequency is greater than support, to generate their projection databases.
For each projection database, the algorithm constructs the prefix pattern con-
nected with the suffix mode to get frequent pattern.

Because Prefixspan does not need to generate candidate sequence patterns, it
reduces the search space greatly. And it belongs to the growth pattern method,
so compared with the original sequence database it reduces the size of projec-
tion database. The main cost of the algorithm is the construction of projection
database. If the average length of sequences is large, it needs to build a projec-
tion database for each sequence pattern, then the time consumption increases
correspondingly.

However, the average length of sequences in the database for scanners is too
long for PrefixSpan. Certainly it will be, in scanning tools, tens of thousands
of payloads waits to request each page of the website. In the course of our

254 H. Sun et al.

Algorithm 1. Framework of our changed PrefixSpan.

Input:
The set of Sequence Database, S;
The minimum support threshold, min_support;

Output:
The set of sequential patterns, S’;

1: Scanning the Database S to extract the set of Items whose frequency is bigger

than min_support,
Items < —scan(sequenceDatabase)

2: for each item € Items do

3 a < —item;

4 for all sequences € sequenceDatabase

5: Suf fizSequence = Suf fiz(a).removeitem(a)

6: S |a= AppendSuf fizSequence(Suf fizSequence);

7 end for

8 for all itemsequence € « do;

9: // extend the item in independence sequence like a.iadd() = {a, b}
10: o' < —item.iadd();

11: I < —d.length;

12: prefizspan(a’,1, S |o);

13: // extension the item in a sequence like a.sadd() = {(a,b)}
14: o < —item.sadd();

15: I < —a".length;

16: prefizspan(a” 1, S |on);

17: end for

18: end for

experiment, we find that the lengths of sequences in scanning tools’ database
can reach hundreds. In the generated frequent sequence, we find that there are
lots of repeated items, which means that the pages in the website is request back
in attack path, like < a(bg)aad >, and we don’t care about that. What we just
want to know is whether the sequence contains more new paths, we just need the
path like < a(bg)d > rather < a(bg)aad >. So after generating the projection
database, we remove all the items belonging to prefix sequence.

The algorithm is shown in Algorithm 1. Firstly, the sequence database is
scanned to obtain all the frequent items N (the frequent sequence whose length
is 1). Secondly, we divide the complete collection of frequent sequences into
n subsets with different prefix. For each item whose frequency is bigger than
min_support, the corresponding projection database is obtained. Thirdly, all
items that belong to prefix sequences are removed. Lastly, the main loop is
executed until no frequent sequence is found.

We present an example to clarify our algorithm. Suppose that the sequence data-
baseis [< a(ac)ad(cf) >,< (ad)c(bc)a >,< (ef)(ab)(df)ab >,< eg(af)cac >] and
the min_support is 70 %. In the first step, we find the frequent items whose frequency
is bigger than 70 %, and the results are a, c, d, f. Then, for each item, for example
a, we get its suffix sequences from the origin database. For the first sequence, the

Mining Frequent Attack Sequence in Web Logs 255

suffix for a is < _(ac)ad(cf) >, and then we remove the item a from suffix sequence,
leaving < _(-c)-d(cf) >. Analogously, the new sequence database we get for a is
[< -(co)d(cf) >,< (d)e(be)- >,< (2b)(df)-b >,< (_f)c—c >]. Next, we extend a to
< a,c¢ >and < (ac) >, which aims to find new frequent sequence. If their frequency
is bigger than min_support, like < a, ¢ >, they are added to the final results as parts
of frequent sequences.

3.4 Pattern Analysis

It is difficult to evaluate the vulnerability directly just with the mined result.
First, lots of sequential patterns are generated after sequential pattern mining,
and we need to analyze each pattern. Second, the format of sequences is repre-
sented with normal digital numbers, and these numbers are unreadable for the
analyzers. For example, < 6 8 (12 8) 16 > is an example pattern, but it is mean-
ingless characters if not transformed to a readable form. In order to ensure the
accuracy and readability of the patterns, the following two steps are performed.

Step 1: maximizing frequent sequences. In the generated frequent sequences, a
large number of sequences are redundant, because many sequences are contained
in other sequences. At this point, we need to delete the redundant sequences.
For example, for a frequent-sequence set < a(bc) >, < a(fd)(bc) >, < a >, we
can find that the first and the third sequence are contained in the second one,
so we need to remove the first and the third sequence, keeping the sequence
< a(fd)(be) >.

Step 2: transforming the sequential pattern into graphical representation. In
order to make the patterns more intuitive to understand what the vulnerabilities
are and where is vulnerable, we translate the resulting patterns into the dot
language. Before that we parse numbers in frequent sequences to strings. In
the step of sequential pattern discovery, we transform path strings to numbers
that are stored in a file. In this part, we transform each number back to the
corresponding string.

For example, Fig.5 shows parts of frequent sequences. The sequences like
<0 > < 02 > and < 0 (2 6) 8 >, are contained in sequence <
0 (2 6) 8 (11 16) >, so in the first step, we delete these sequences. One of
the final patterns in Fig.51is < 0 (2 6) 8 (11 16) 182 >. We translate the number

fileinclude:/::0
0# xssattack:/::2
0 #2 # it /e
042 6# portsqlinject:/::6
clientsqlinject:/::8
0 #2 6 #3 # lientfuzztesting/::11
0 #2 6 #8 #11 # clientfuzztesting:/:
0 #2 6 #8 #11 16 # fromurlfileinclude:/::16
0 #2 6 #8 #11 16 #182 # directorytraversal:/user::168
0 #2 6 #8 #11 16 #183 # xssattack:/images::182
0 #2 6 #8 #11 16 #168 # xssattack:/tpl::183

Fig. 5. Mined sequences. Fig. 6. Corresponding strings.

256 H. Sun et al.

to strings according to Fig. 6, and the pattern is transformed to <fileinclude:/
(zssattack:/ portsqlinjection:/) clientsqlinjection:/ (clientfuzztesting:/ fromurl-
fileinclude:/) wssattack:/>. Lastly, the sequence can be illustrated in dot lan-
guage.

4 Experimentation and Analysis

In this section, we evaluate our implementation of frequent attack sequence
mining. To prove the effectiveness of our system, we use the access logs from the
real world. The experimental data are the raw access logs that are collected on a
company’s web server (Nginx) from September 2014 to October 2015. The testing
machine is a 64-bit system with 4 GB RAM and a 3.2 GHz Intel i5 processor
installed.

We first pre-process log files with different sizes separately. Figure 7 depicts
the times consumed when processing different log files in our experiment. We can
see that the time of finding attack record increases linearly, and this is because
that the time spent on matching payload and reading log file is in proportion
to the size of raw log files. While the sudden increase of time is because that
attack file size increases, when writing the attack record to file it consumes a lot
of time. On the other hand, from the red starts of Fig.7, we can see that the
size of attack files based on the number of attack record is randomly distributed.
Intuitively, we may think that the probability of containing attack records for
large logs is higher than small logs, but the appearance of attacks in the dataset
is actually random. It implies that large-scale attacks may be less unpredictable.

With different sizes of attacker files that are generated by matching attack
payloads, users and sessions are identified, and the results are shown in Fig. 8.
For all benchmarks, the time increases with the increase of attack file sizes.
For this part, we first use the method of fingerprint method, the response error
ratio, and counting the number of attacks (which are introduced in Sect.3.2).
By these methods mentioned above, we separate man-made attack from scanner
tools, and then, for each user, we identify sessions.

800 - - - - 32 @ 80 : : - : : :
— —e— Preprocess time <3
» 7001 * Attack file size * 128 —~ g 700 |- —e— process time for indentification
n a]
o 600 %= O 600
@ ~ =
Q Q <
O 500 420 &= O 500
% x °
O 400 % Q c a0}
Q = gl
N ® "
S 300 R A
[0) o »
£ 200 {8 © - 200}
= » &
100 {4 @ 100} /
@
(2]
o . . . P . o L2, \ \)))
0 500 1000 1500 2000 2500 3000 0 5 10 15 20 25 30 35
Size of log (MB) Size of attack file (MB)
Fig. 7. Finding attack record time. Fig. 8. User and Session identification

time.

Mining Frequent Attack Sequence in Web Logs 257

1000000 T T T T

100000 |-

Prefixspan —=— |
Remove prefix Item —s—
10000 -

1000

100

Number of frequent sequence
T

10

30 35 40 45 50
Support (%)

Fig. 9. Frequent sequences number of PrefixSpan and our algorithm.

After preprocessing log files, we have 52338 records of attack in total includ-
ing 52090 records for scanners and 248 records for attackers. In order to evaluate
the effectiveness of our improved Prefixspan algorithm, we compare it with the
original Prefixspan. As shown in Fig. 9, with the decline of the support, the num-
ber of frequent sequences generated by PrefixSpan grow exponentially, while our
algorithm generates much less frequent sequences than those that have the same
support in Prefixspan. The main reason is that a large number of duplicate items
has been removed after the projection database is generated. Correspondingly,
the space of projection database is smaller.

In order to find sequential attack patterns from the man-made sequence
database, we set the support with 3.5%, 5%, 7%, 9%, 10 %, 12%, 14 %, 16 % to
find more possible frequent attack sequences. Before generating the flowchart of
attack, we transfer the sequence numbers to strings according to number-string
file whose format is similar to Fig. 6. Then we transfer the patterns to the dot
language. Table 1 shows the number of records generated with each support, and
Fig. 10 illustrates the attack sequence generated by human when the support is
3.5 %.

Then, we experiment on the sequence database for scanners. As illustrated
in Table 2, we set the supports to be bigger than that of the man-made, which
is because that there are many common sequences between scanners. We do not
need to understand the sequence of each scanner. What we really need to find

Table 1. Number of frequent sequence Table 2. Number of frequent sequence
record by man-made record in scanning tools

Support(%) 3.5 5/7/9/10|/12|14|16|18 Support (%) 22| 25|27|30|33|35|38|40|43
Number 27 |14|8|6| 5| 5| 4| 3| 3 Number 2936|132|89(35|17|11| 8 5| 4

258 H. Sun et al.

Session Number 1
Directorytraver:/
my info

FileInclude:/myinfo

Fig. 10. The users’ attack sequence of visualization.

XSSattack:/search

XSSattack:/search

XSSattack:
/search/statisticsinfo

is the common scanning sequence, and that is different from attackers’ frequent
sequences which are all important to understand the behaviors of attackers.
So we set the supports with 22%, 25%, 27%, 30%, 33%, 35%, 38 %, 40 %,
43 %. Table 2 shows the number of records generated with each support, and we
perform the same steps as for man-made attack. Figure 11 displays parts of the
attack records of scanners when the support is 22 %.

By analyzing the results, we can conclude that for this website, the man-
made attack sequence is biased to a specific page and a certain attack type,

XSSattack:/search

Session| Number 2
A 4

PortXSSattack:
/css/commons/common. css

PortXSSattack:/css/user
login. css

ortXSSattack:/css/search,
search. css

PortXSSattack:/

PortXSSattack:
search

ortXSSattack:/css/commons
fontawsome. min. css

PortXSSattack:
/ js/commons/page. js

PortXSSattack:
js/commons/loginwindow. js

PortXSSattack: /js/3rd-1ib/
jquerypulgins/md5/1. 1. 0/md5. js

Fig. 11. The scanner attack sequence of visualization.

Mining Frequent Attack Sequence in Web Logs 259

while scanners exhibit a wide varieties of attacks and more pages are involved.
From the user attack sequence as shown in Fig. 10, we can see that the “/”
page suffered from XSS attacks frequently, and the XSS attack against the page
“/search” are also attempted. Or the attackers tried to use the XSS from page
“/search” to “/search/statisticsinfo”. Based on this, we can infer that there are
contents that come from users’ input, or the users are allowed to change the
three pages that contain HTML tags. And XSS vulnerability may exist in these
pages. In addition to the root directory, the attacker uses directory traversal to
try to find the content in higher level directories to execute system command,
and also perform “directorytraver” or “fileinclue” attack on page “/myinfo”.
Based on these information, the webmaster can check whether the pages of “/”
and “/myinfo” can be bypassed by unprivileged users.

Figure 11 shows that the XSS attack sequence from scanners, it shows that
for a certain type of general attack, the basic attacking paths share a lot similar-
ity. Actually, many different types of attacks are found in the attack sequence,
Fig. 11 only shows the XSS attack. With the patterns of attack sequences, we
can distinguish scanners.

5 Conclusions and Future Work

This paper presents the design, implementation, and evaluation of sequen-
tial attack pattern mining in web logs. With efficient mechanisms, our system
achieves the goals of discovering attack sequences of users and scanners to inves-
tigate the attack behaviors. We can pinpoint vulnerable pages and understand
the internal-path of scanners. In the future, we plan to investigate new ways to
identify the type of attacks to improve the accuracy, for example, using auto-
matic classification algorithms. On the other hand, we are also interested in
identifying black-box scanners by using the patterns generated by our system.

Acknowledgment. This research was supported in part by the National Science
Foundation of China under grants 61173166, 61272190, and 61572179, the Program for
New Century Excellent Talents in University, and the Fundamental Research Funds
for the Central Universities of China.

References

Awstats. http://www.awstats.org/

Kibana. https://www.elastic.co/products/kibana

Piwik. http://piwik.org/

Splunk. http://www.splunk.com/

Cooley, R., Mobasher, B., Srivastava, J.: Data preparation for mining world wide
web browsing patterns. Knowl. Inf. Syst. 1, 5-32 (1982)

Dziczkowski, G., Wegrzyn-Wolska, K., Bougueroua, L.: An opinion mining app-
roach for web user identification and clients’ behaviour analysis. In: 2013 Fifth
International Conference on Computational Aspects of Social Networks (CASoN),
pp. 79-84. IEEE (2013)

G =

2

http://www.awstats.org/
https://www.elastic.co/products/kibana
http://piwik.org/
http://www.splunk.com/

260

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

H. Sun et al.

Han, J., Pei, J., Mortazavi-Asl, B., et al.: FreeSpan: frequent pattern-projected
sequential pattern mining. In: Sixth ACM SIGKDD International Conference on
Knowledge Discovery & Data Mining, pp. 355-359. ACM (2000)

He, J.: Mining users potential interested in personalized information recommenda-
tion service. J. Mod. Inf. (2013)

. Li, Y., Feng, B.Q., Mao, Q.: Research on path completion technique in web usage

mining. In: International Symposium on Computer Science and Computational
Technology, pp. 554-559. IEEE (2008)

Kewen, L.: Analysis of preprocessing methods for web usage data. In: 2012 Interna-
tional Conference on Measurement, Information and Control (MIC), pp. 383-386.
IEEE (2012)

Mele, I.: Web usage mining for enhancing search-result delivery and helping users
to find interesting web content. In: Proceedings of the Sixth ACM International
Conference on Web Search and Data Mining, pp. 765-770. ACM (2013)
Nasraoui, O.: Web data mining: exploring hyperlinks, contents, and usage data.
ACM SIGKDD Explor. Newsl. 10, 23-25 (2009)

Provos, N., Mcnamee, D., Mavrommatis, P., et al.: The ghost in the browser analy-
sis of web-based malware. In: Usenix Hotbots (2007)

Srivastava, J., Cooley, R., Deshpande, M., et al.: Web usage mining: discovery and
applications of usage patterns from web data. ACM SIGKDD Explor. Newsl. 1(2),
12-23 (2000)

Suresh, R.M., Padmajavalli, R.: An overview of data preprocessing in data and
web usage mining. In: 2006 1st International Conference on Digital Information
Management (2006)

Ting, I.H., Kimble, C., Kudenko, D.: Applying web usage mining techniques to
discover potential browsing problems of users. In: IEEE International Conference
on Advanced Learning Technologies, pp. 929-930. IEEE Computer Society (2007)
Varnagar, C.R., Madhak, N.N., Kodinariya, T.M., et al.: Web usage mining: a
review on process, methods and techniques. In: International Conference on Infor-
mation Communication and Embedded Systems (ICICES) 2013, pp. 40—46. IEEE
(2013)

Wang, T., He, P.L.: User identification in web mining and iris recognition technol-
ogy. Comput. Eng. 34(6), 182-184 (2008)

Pei, J., Han, J., Mortazavi-Asl, B., et al.: Mining sequential patterns by pattern-
growth: the PrefixSpan approach. IEEE Trans. Knowl. Data Eng. 16(11),
1424-1440 (2004)

Qin, C., Liao, C.: Session identification based on linked referrers and web log
indexing. Comput. Syst. Sci. Eng. 25(8), 273-286 (2013)

Agrawal, R., Srikant, R.: Mining sequential patterns. In: Proceedings of ICDE,
pp. 3-14. IEEE Computer Society (1995)

Srikant, R., Agrawal, R.: Mining sequential patterns: generalizations and perfor-
mance improvements. In: Apers, P., Bouzeghoub, M., Gardarin, G. (eds.) EDBT
1996. LNCS, vol. 1057, pp. 1-17. Springer, Heidelberg (1996)

	Mining Frequent Attack Sequence in Web Logs
	1 Introduction
	2 Background and Motivation
	2.1 Web Usage Mining
	2.2 Web Application Security
	2.3 Motivation

	3 Design and Implementation
	3.1 Data Collection
	3.2 Data Preprocessing
	3.3 Attack Sequential Pattern Discovery
	3.4 Pattern Analysis

	4 Experimentation and Analysis
	5 Conclusions and Future Work
	References

