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Abstract

With the information increases explosively, data mining
techniques are frequently employed to identify trends in the
warehouse that may not be readily apparent. In this pa-
per we apply fuzzy data mining techniques to security sys-
tem and build a fuzzy data mining based intrusion detection
model. Through normalizing the data set and building fuzzy
similar matrix of the network connections in the data set,
network connections are clustered into different classes.

1 Introduction

Intrusion detection is a critical component of secure in-
formation systems. There are two main intrusion detection
systems. Anomaly intrusion detection system (AIDS) such
as IDES is based on the profiles of normal behaviors of
users or applications and checks whether the system is be-
ing used in a different manner. The second one is called
misuse intrusion detection system (MIDS), which collects
attack signatures, compares a behavior with these attack sig-
natures, and signals intrusion when there is a match.

Many different approaches and techniques, such as fuzzy
logic and neural networks, have been applied to anomaly in-
trusion detection. [6] generates fuzzy association rules from
new audit data to detect whether an intrusion occurs or not.
In [5], the fuzzy intrusion recognition engine (FIRE) uses
fuzzy logic to assess whether malicious activity is taking
place on a network. Bridges et al. apply fuzzy data min-
ing techniques to the anomaly-based components [1]. [24]
gives us a comparison of anomaly detection techniques and
draws a conclusion that attentions should be paid to con-
sider what are the most effective data streams to monitor. In
order to build an efficient intrusion detection system, [22]
is based on the techniques of SVMs and neural networks to
identify important and useless input features.
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Intrusion detection systems usually pay their attention to
detect attacks and intrusion and ignore the importance of re-
dundant or repeated alarms that respond to the same occur-
rence of an attack. As a result, there are a lot of alarms and
it is difficult to take appropriate actions. [4] provides meth-
ods to process alerts. The clustering and merging methods
recognize alerts from the same intrusion and create only one
alert totally to present these various alerts. A correlator in
[17] is proposed to correlate related alerts and uncover the
attack strategies behind sequences of attacks, based on the
prerequisite and the consequence of each type of attacks.

In section 2, we discuss the related works. Section 3
introduces a set of relevant fuzzy cluster formulas, and
describes how to calculate relationship between records.
In section 4, we evaluate our intrusion detection model
through experiments. Section 5 gives us a conclusion.

2 Related Works

Most intrusions occur via network using the network
protocols to attack their targets. For example, during a cer-
tain intrusion, a hacker follows fixed steps to achieve his
intention, first sets up a connection between a source IP ad-
dress to a target IP, and sends data to attack the target. These
kinds of connections are labeled attack connections and the
rest connections are normal connection [8]. Generally, there
are four categories of attacks [15]. They are:

• DOS (denial-of-service), for example, ping-of-death,
syn flood, etc.

• PROBING, surveillance and probing, for example,
port-scan, ping-sweep, etc.

• R2L, unauthorized access from a remote machine, for
example, guessing password.

• U2R, unauthorized access to local superuser privileges
by a local unprivileged user, for example, various buffer
overflow attacks.

DOS and PROBING attacks involve many connections
to some hosts in a very short period of time. R2L and U2R
attacks are embedded in the data portions of packets, and
normally involve only a single connection. Attack connec-
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tions and normal connections have their special feature val-
ues and flags in the connection head, and package contents
can be used as signatures for normal determination and in-
trusion detection. Intrusions belong to the same intrusion
category have identical or similar attack principles and in-
trusion techniques. Therefore they have identical or similar
attack connections and are significantly different from nor-
mal connections.

3 Fuzzy Clustering

The aim of cluster analysis is the classification of net-
work connections, or objects, according to similarities
among them, and organizing objects into groups. A clus-
ter is a group of objects that are more similar to other ones
than to other clusters. Similarity is often defined by means
of distance based upon the length from a data vector to some
prototypical object of the cluster.

Since clusters can formally be seen as subsets of the data
set, one possible classification method can be whether the
subsets are fuzzy or crisp (hard). Hard clustering methods
are based on classical set theory, and it requires an object
that either does or does not belong to a cluster. Fuzzy clus-
tering methods (FCM) allow objects to belong several clus-
ters simultaneously with different degrees of membership.
The data set, U, is thus partitioned into r fuzzy subsets. In
many real situations, fuzzy clustering is more natural than
hard clustering, as objects on the boundaries between sev-
eral classes are not forced to fully belong to one of the
classes. However, they rather are assigned to membership
degrees between 0 and 1 indicating their partial member-
ships [10].

The data are typically observations of some phe-
nomenon. Each object consists of m measured vari-
ables, grouped into an m-dimensional column vector xi =
{xi1, xi2, ..., xim}. A set of n objects is denoted by U =
{x1, x2, ...xn} and represented as a n × m matrix.




x11 x12 ... x1m

x21 x22 ... x2m

... ... ... ...
xn1 xn2 ... xnm


 (1)

3.1 Data Standardization

In order to remove the influence of dimension, we first
standardize the data set. A collection of numeric data is
standardized by subtracting a measure of central location
(such as the mean or median) and divided by some mea-
sure of spread (such as the standard deviation, interquartile
range or range). This yields data with a similarly shaped
histogram with values centered around 0.

x′
ik =

xik − xk

sk
, (i = 1, 2, ..., n, k = 1, 2, ..., m) (2)

where xk and sk is the mean value and standard deviation
of one feature or the kth dimension of U .

xk =
1
n

n∑
i=1

xik (3)

sk =

√√√√ 1
n

n∑
i=1

(xik − xk)2 (4)

Standardization transforms the mean of the set of feature
values to zero, and the standard deviation to one. But x′

ik

may not be in the interval [0,1]. After the following change,
x′′

ik is mapped into the interval [0,1].

x′′
ik =

x′
ik − min1≤i≤n {x′

ik}
max1≤i≤n {x′

ik} − min1≤i≤n {x′
ik}

, (k = 1, 2, ..., m)

(5)

3.2 Correlation Coefficient

In order to cluster objects, we build a fuzzy similar ma-
trix to determine the correlation coefficient between xi and
xj , rij = R(xi, xj). The correlation coefficient can be cal-
culated as

rij =
∑m

k=1 |xik − xi| |xjk − xj |√∑m
k=1 (xik − xi)

2 ·
√∑m

k=1 (xjk − xj)
2

(6)

xi =
1
m

m∑
k=1

xik, xj =
1
m

m∑
k=1

xjk (7)

When rij = −1 there is a strong negative correlation be-
tween xi and xj , when rij = 1 there is a strong positive
correlation, and when rij = 0 there is no correlation at all.
If two objects are linearly dependent one of them is redun-
dant; it is sufficient to select just one of them as an object.

Fuzzy similar matrix R is a fuzzy matrix and may not be
transferable, or to say R is not a fuzzy equivalent matrix.
In order to cluster these objects, we transfer R to an fuzzy
equivalent matrix R∗. Through the square method in [25],
we get the transitive closure of R, t(R), which is the fuzzy
equivalent matrix R∗. Based on R∗, by decreasing simi-
larity threshold λ, a dynamic cluster result can be obtained
[25].
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Table 1. Sample Space
features

sample 1 2 ... k ... m

x1 x11 x12 ... x1k ... x1m

x2 x21 x22 ... x2k ... x2m

... ... ... ... ... ... ...
xi xi1 xi2 ... xik ... xim

... ... ... ... ... ... ...
xn xn1 xn2 ... xnk ... xnm

x (x1 x2 ... xk ... xm)

3.3 Determine Best Threshold λ

In the analysis of fuzzy cluster, the variance of λ ∈ [0, 1]
causes different class results and forms a dynamic cluster
result. This dynamic cluster result helps us understanding
the relationship between objects. But it is usually required
that λ be fixed and objects be classified to a concrete group.

U = {x1, x2, ...xn} is the sample space, and each
sample has m features, xi = {xi1, xi2, ..., xim}(i =
1, 2, ..., m). The raw data matrix is listed in Table 1. In
Table 1, xk = 1

n

∑n
i=1 xik(k = 1, 2, ..., m). x is the center

vector of sample space U .
Assume there are r kinds of classes for certain λ, and

samples size of the jth class is nj . The samples in the jth

class are recorded as x
(j)
1 , x

(j)
2 , ..., x

(j)
nj , and the center vec-

tor of the jth class is x(j) =
(
x

(j)
1 , x

(j)
2 , ..., x

(j)
mj

)
. x

(j)
k is

the mean value the kth feature.

x
(j)
k =

1
nj

nj∑
i=1

x
(j)
ik (k = 1, 2, ..., m) (8)

The random variable

F =

∑r
j=1 nj

∣∣∣
∣∣∣x(j) − x

∣∣∣
∣∣∣
2

/ (r − 1)

∑r
j=1

∑n
j

i=1

∣∣∣
∣∣∣x(j)

i − x(j)
∣∣∣
∣∣∣
2

/ (n − r)
(9)

is a F distribution with (n − 1, n − r) degrees of freedom.
Here

∣∣∣
∣∣∣x(j) − x

∣∣∣
∣∣∣ =

√√√√
m∑

k=1

(
x

(j)
k − xk

)2

(10)

is the distance between x(j) and x.
∣∣∣
∣∣∣x(j)

i − x(j)
∣∣∣
∣∣∣ is the

distance between sample x
(j)
i and the center vector x(j)

in the jth class. Numerator of F distribution suggests the
distances between different classes, and denominator of F

distribution suggests the distances between samples in the
same class. Hence the larger F , the longer the distances be-
tween different classes, and the better the cluster result. If
F > Fα(r − 1, n − r)(α = 0.05), the difference between
classes is notable from statistical inference analysis [25].

4 Experiment

In this experiment, we use the raw data used by the 1999
KDD intrusion detection contest [8]. This database includes
a wide variety of intrusions simulated in a military net-
work environment. Being part of this database, test data
file named corrected.gz contains a total of 38 training attack
types. It consists of approximately 300,000 data instances,
each of which is a vector of extracted feature values from a
connection record obtained from the raw network data gath-
ered during the simulated intrusion and is labelled normal or
a certain attack type.

Table 2 shows the composition of the test data. There are
total 39 types of data, including 38 types of attack and one
normal type. The first, fourth and seventh columns of Table
2 mean the types of data, and rest columns are the frequency
and percentage of each type. For example, the frequency of
apache2 attack in the raw data is 794, and the percentage is
0.3.

Each data instance of test data has 42 fields. In order
to illustrate conveniently, we number the 42 fields of each
record in the correcred.gz file. Field 1 represents a certain
attack name, field 2 represents the protocol type, and so on.
In these 42 fields, 35 fields are numeric valued features, and
7 fields are nominal valued features. Among the nominal
valued features, fields such as attack name, protocol type,
service and flag are combined together to label one attack.

4.1 Features Selection

When we process volumes of data, it is necessary to re-
duce the large number of features to a smaller number of
features. There are 42 fields in each data record and it is
hard to determine which fields are useful or which fields are
trivial. However it may be feasible to correlate feature us-
ing formula (6). Correlation coefficients between fields are
calculated by software SPSS [SPSS] and listed in Table 3.

Due to space limit, correlation coefficients of only the
last 14 field are showed in Table 3. From Table 3 we can
see that correlation coefficient between filed 28 and 29 is
-0.792, the correlation coefficient between 28 and 30 is
0.331, and so on.

If the correlation coefficient of field i and j, R(i, j), is
larger than 0.8, there is a strong correlation between filed i
and j, and select one of them to represent these two fields.
From the correlation coefficients result produced by SPSS,
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Table 2. Types of Data with Their Frequencies and Percentages in Test Data

Attack Frequency Percen. Attack Frequency Percen. Attack Frequency Percen.

apache2 794 .3% named 17 .0% sendmail 17 .0%
back 1098 .4% neptune 58001 18.6% smurf 164091 52.8%
buffer overflow 22 .0% nmap 84 .0% snmpgetattack 7741 2.5%
ftp write 3 .0% normal 60593 19.5% snmpguess 2406 .8%
guess passwd 4367 1.4% perl 2 .0% sqlattack 2 .0%
httptunnel 158 .1% phf 2 .0% teardrop 12 .0%
imap 1 .0% pod 87 .0% udpstorm 2 .0%
ipsweep 306 .1% portsweep 354 .1% warezmaster 1602 .5%
land 9 .0% processtable 759 .2% worm 2 .0%
loadmodule 2 .0% ps 16 .0% xlock 9 .0%
mailbomb 5000 1.6% rootkit 13 .0% xsnoop 4 .0%
mscan 1053 .3% saint 736 .2% xterm 13 .0%
multihop 18 .0% satan 1633 .5%

Table 3. Correlation Coefficients between Fields from 28 to 41

#28 #29 #30 #31 #32 #33 #34 #35 #36 #37 #38 #39 #40 #41

#28 1 -.792 331 -.035 .118 -.753 -.778 .336 -.449 -.047 -.090 -.099 .982 .994
#29 -.792 1 -.422 .076 -.152 .930 .961 -.397 .542 .060 -.483 -.480 -.798 -.797
#30 .331 -.422 1 .088 .034 -.398 -.409 .742 -.221 -.014 .126 .127 .323 .334
#31 -.035 .076 .088 1 -.334 -.012 .020 .002 -.189 .135 -.036 -.039 -.045 -.035
#32 .118 -.152 .034 -.334 1 -.006 -.109 .018 .240 -.411 .069 .070 .121 .118
#33 -.753 .930 -.398 -.012 -.006 1 .973 -.443 .567 -.044 -.465 -.461 -.761 -.758
#34 -.778 .961 -.409 .020 -.109 .973 1 -.450 .572 .040 -.479 -.475 -.787 -.783
#35 .336 -.397 .742 .002 .018 -.443 -.450 1 -.230 -.006 .152 .155 .356 .338
#36 -.449 .542 -.221 -.189 .240 .567 .572 -.230 1 -.040 -.280 -.278 -.455 -.449
#37 -.047 .060 -.014 .135 -.411 -.044 .040 -.006 -.040 1 -.027 -.028 -.049 -.047
#38 -.090 -.483 .126 -.036 .069 -.465 -.479 .152 -.280 -.027 1 .989 -.091 -.088
#39 -.099 -.480 .127 -.039 .070 -.461 -.475 .155 -.278 -.028 .989 1 -.087 -.098
#40 .982 -.798 .323 -.045 .121 -.761 -.787 .356 -.455 -.049 -.091 -.087 1 .987
#41 .994 -.797 .334 -.035 .118 -.758 -.783 .338 -.449 -.047 -.088 -.098 .987 1
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# 13 # 16
.995

# 23

# 24

.944

# 36

.866

# 25 # 26

# 39# 38

.992

.987

.984

.979

.990

.989

# 27 # 28

# 41# 40

.995

.986

.990

.982

.994

.987

# 29 # 33
.930

# 34

.961 .973

(1)

(2) (3)

(4) (5)

Figure 1. Graphic Representation of Correla-
tion Coefficients

five groups in which elements correlate tightly are listed in
the following.

• R(13,16)=0.995

• R(23,24)=0.944, R(24,26)=0.866

• R(29,33)=0.930, R(33,34)=0.973, R(29,34)=0.961

• R(25,26)=0.992, R(25,38)=0.987, R(25,39)=0.984,
R(26,38)=0.979, R(26,39)=0.990, R(38,39)=0.989

• R(27,28)=0.995, R(27,40)=0.986, R(27,41)=0.990,
R(28,40)=0.982, R(28,41)=0.994, R(40,41)=0.987

Figure 1 gives us the graphic representation of correla-
tion coefficients of the above five groups. Figure 1 (4) is
a complete graph, which means that correlation coefficient
of each two fields is larger 0.8. We select one field among
the four to represent these fields. In Figure 1, there are to-
tal 11 redundant fields, and these fields are omitted in the
following process.

4.2 Classify Attack and Normal Records

We classify the test data into classes using the formu-
las in section 3. Table 4, 5, and 6 show the details of the
cluster result. There are total 132 classes, some of which
include only one type of attack or only normal records, like
classes in Table 4, and rest of which include several types.
In Table 4, the second line means that the 15th class con-
tains the guess passwd attack with protocol tcp, the attack
target is pop 3 service, and the attack connection is at SF
state. There are 3640 guess passwd attack records in the
15th class, a percentage of 1.17. Table 5 shows what types
of attacks are in the 50th class. The 50th class comprises
49 kind of neptune attacks with same protocol, connection
state, and different services.

Classes in Table 4 and 5 comprise either attack records
or normal records, so the number of false positive or false
negative is zero. But the 20th class in Table 6 includes both
attack and normal records. Number of normal records is
174, with a percentage of 0.06, so the false positive of this
class is 0.0006.

If the percentage of the normal records in one class is
larger than 50, this class is a normal class, and otherwise
an attack class. Among these 132 classes, 34 classes are
normal classes. 29 classes have only normal records and
5 normal classes include attack records. Among the 98 at-
tack classes, 237 normal records are regarded as attack in
4 attack classes. From the result listed above, we can see
that the performance of this model is excellent. The fuzzy
clustering methods avoid the disadvantages caused by tradi-
tional data mining techniques. To avoid a hard definition be-
tween normal class and attack class, fuzzy clustering meth-
ods do not forced a behavior on the boundaries between sev-
eral classes to fully belong to one of the classes.

5 Conclusions

In this paper we apply fuzzy data mining techniques to
security system. Through normalizing the raw data and
building fuzzy similar matrix, features selection, the raw
data records are clustered into different classes.

Traditional data mining techniques are applied to secu-
rity field to find intrusion patterns. However some behaviors
are anomaly but not intrusion. We apply fuzzy clustering
methods to intrusion detection to avoid a hard definition be-
tween normal class and certain intrusion class.
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