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Concurrent hash table has been an area of active research in recent years, and a wide variety of fast and
efficient concurrent hash tables (CHTs) have been proposed to exploit the advantages of modern parallel
computer architectures such as today’s mainstream multi-core systems. As one of the fundamental
data structures widely used in software systems, existing works on CHTs focus on either algorithmic
improvements, or hardware-oriented optimizations, or application-specific designs. However, there is a
lack of a comprehensive and comparative study on different implementations. In this paper, we conduct
an experimental study on the state-of-the-art, and our goal is to critically review existing CHTs from wider
aspects and with more detailed analysis. Concretely, we have conducted extensive evaluations of five
CHTs using a unified testing framework on four multi-core hardware platforms, and implemented our
HTM-based concurrent hash table. A variety of metrics such as throughput scalability, latency, impact of
memory hierarchy, thread pinning strategies, synchronization mechanisms, and memory consumption,
are measured in order to obtain the deep insights about performance impediments and good design
choices. With this study, we hope to identify potential issues and pinpoint promising directions for future

research of CHTs.

© 2017 Elsevier B.V. All rights reserved.

1. Introduction

As the number of cores has been increasing on modern com-
puter architectures in recent years, challenges in inventing new
or enhancing existent concurrency data structures to fully lever-
age the hardware advancements are emerging. Hash table is a
well-known data structure, which provides simple interfaces to
access the elements. lookup, insert and delete are the three main
operations provided by hash tables. As it can offer constant time
lookup and update operation, it is widely used in most software
systems [1,2]. In spite of the fact that the study on sequential hash
tables is relatively mature, the research on concurrent hash tables
(CHTs) has attracted a lot of efforts in recent years, due to the
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promising performance, hardware advancement, and diversified
requirements in different usage scenarios.

Ideally, CHTs should achieve high performance and scalabil-
ity under different workloads and hardware settings. However,
designing and implementing such CHTs is very challenging [3,4].
Hardware-conscious CHTs leveraging platform-specific features
are often ineffective in obtaining portable performance [5]. On
the other hand, hardware-oblivious CHTs often fails to achieve
highest possible performance. Similarly, a CHT optimized for a
specific type of workloads may exhibit poor performance under
a slightly different workload. For example, the Read-Copy-Update
(RCU) based hash table is one of the workload sensitive CHTs. It
obtains high throughput and shows good scalability when dealing
with read-only workloads. However, for workloads with a small
fraction of update operation, it exhibits significant performance
degradation. In [5], the authors present a complete picture of
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how synchronization schemes behave in concurrent algorithms.
In most cases, when a scalability issue is encountered, it is not
straightforward to identify the root cause that may be the underly-
ing hardware, synchronization algorithm, usage of specific atomic
primitives, application context, or workloads.

Although both the industry and academia have proposed a
range of CHTs with different target such as Threading Building
Blocks (TBB) [6] and ConcurrentHashMap in Java [7], the perfor-
mance of CHTs not only is related to the application requirements
but also relies on the exploitation of lower-level hardware char-
acteristics. When profiling CHTs, we need to perform the analysis
by integrating many relevant elements and considering at different
levels rather than evaluating based only on intuitive metrics such
as throughput and latency. Furthermore, with a unified testing
framework and a set of common performance metrics, it seems
that no single CHT can outperform others in all aspects when
handling a diversified set of workloads. On the other hand, from
the perspective of users, the effective way to adopt a CHT is to
clearly recognize all the potential performance obstacles. Unfortu-
nately, these practical concerns are rarely mentioned in previous
studies. Lacking a unified benchmark to evaluate CHTs, it is hard
for the users to make a decision about which CHTs to employ in
their software systems in order to attain desired performance. In
summary, a comprehensive and in-depth analysis is of significance
in using, designing, and optimizing CHTs. Inspired by the practices,
we choose five state-of-the-art CHTs to conduct a comprehensive
evaluation and analysis across a wide set of metrics. The five CHTs
taken from the literature are listed in Table 1 with brief description.

CHTs in this study are written in C/C++, and they are evaluated
on 4 multi-core platforms: AMD Opteron, Intel Xeon Phi 7120P (a
many-core platform based on Intel MIC architecture), Intel Xeon
E5-2630, and Intel Xeon E7-4850. To the best of our knowledge, it
is the most comprehensive evaluation of concurrent hash tables to
date. We make the following contributions in this paper.

e First, we present a framework, named CHT-bench, which
provides a fair testing environment and unified interface for
the experiments by hiding the discrepancies of hardware
platforms, synthesized workloads, concurrency models, and
compiler configurations. The source code of this work can
be found at https://github.com/Gwinel/CHT-bench. In this
way, we can guarantee the experimental results generated
from our framework are fairly comparable between differ-
ent CHTs.

e Second, the evaluations are explored from a wide range
of perspectives including thread scalability, throughput, la-
tency, memory hierarchy impact, low-level synchroniza-
tion primitives, and memory usage. The inter-correlations
between relevant metrics are also discussed when neces-
sary. The experiments are conducted on four major hard-
ware platforms including Intel MIC and three representative
NUMA systems. We ported CHTSs to the MIC platform, and to
our knowledge, this is the first extensive study of concurrent
hash tables on Intel MIC architecture.

e Third, implications about pitfalls, design trade-offs, and de-
sirable optimizations are summarized for each evaluated
metric, which can serve as guidelines for future research and
practical development of CHTs.

The rest of the paper is organized as follows. Section 2 pro-
vides brief background on CHTs and modern computer hardware
features. We present the experimental platforms and parameter
configurations in Section 3. A comprehensive analysis of CHTs are
made in Section 4. The related work is presented in Section 5.
Section 6 concludes this paper.

2. Background

The explosive growth of commercial multiprocessor machines
has brought about a revolution in the art of concurrent program-
ming. The shared-memory programming model enforced by the
underlying hardware and programming languages/runtime sys-
tems imposes much greater challenges in designing and verifying
concurrent data structures than their sequential counterparts. In
this section, we first introduce basic concepts and operations of
concurrent hash tables and common metrics used to evaluate
them. Inherent hardware features that have non-trivial impact on
the performance of concurrent data structures are then presented,
such as the intricacies of cache coherence on NUMA systems and
the interplay between the cache coherent protocol and synchro-
nization primitives.

A hash table (hash map) is a data structure that can map keys
to values. A hash table uses a hash function to compute an index
into an array of buckets or slots, from which the desired value
can be found. Hash collisions are unavoidable when hashing a
random subset of a large set of possible keys. The chained and
open addressing hashing are two common strategies to avoid hash
collisions.

A chained hash table indexes into an array of pointers to the
heads of linked lists. Each linked list cell has the key for which it
was allocated and the value which was inserted for that key. To
lookup a particular element from its key, the key’s hash is used to
work out which linked list to follow, and then that particular list is
traversed to find the element. The disadvantage of chained hashing
is that following pointers to search the linked list consumes more
memory. The advantage is that the chained hash is only linearly
slower as the load factor (the ratio of elements in the hash table to
the length of the bucket array) increases, even if it is large than 1.

An open-addressing hash table indexes into an array of pointers
to pairs of key/value. If there are hash collisions in the hash table,
certain schemes are needed to find another slot instead. Open-
addressing is usually faster than chained hashing when the load
factor is low because it does not need to follow pointers between
list nodes. However, it will become slower as the load factor is close
to 1. In addition, the load factor of open addressing is always less
than 1.

A Concurrent Hash Table (CHT) is a hash table that allows
multiple readers and writers (or multiple readers and single writer)
to access shared objects concurrently. Like its sequential counter-
part, a CHT not only offers the same set of APIs, but can exert the
performance of multiprocessors more efficiently. Arbitrating con-
current accesses is a necessity for all concurrent data structures.
Lock-based and lock-free synchronization are two commonly used
concurrency programming model. For lock-based CHTs, critical
sections are protected by locks to ensure thread-safety. Coarse-
grained locking is relatively easy to implement, while prevent-
ing more efficient utilization of computing resources. With fine-
grained locking, multiple threads are allowed to operate on differ-
ent partitions of the data concurrently. Finer granularity is bene-
ficial to improve the overall performance but at the cost of more
implementation endeavors. Lock-free is another concurrency pro-
gramming paradigm without using explicit locks. Lock-free CHTs
are also widely proposed [12,13].

In pursuing high performance concurrent data structures, hard-
ware support for synchronization is also a main challenge. In
multi-processor multi-core environments, to maintain data con-
sistency, hardware cache-coherence is often needed to ensure
the consistency of accessing shared data from different cores.
A cache-coherence protocol maintains state transitions on load,
store, and atomic instructions (i.e., CAS and FAI). For example, a
protocol may choose different update and invalidation transitions
such as update-on-read, update-on-write, invalidate-on-read, or
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Table 1
List of concurrent hash tables.
No. Algorithm Description Links Language
1 Cache Line Hash Table (CLHT) Minimizes cache line transfers [8] C
2 Hopscotch Hashing (Hopscotch) Combines the features of cuckoo, linear probing and chaining [9] C++
3 Concurrent Cuckoo Hashing (Cuckoo) A concurrent cuckoo hashing supports multi-reader/multi-writer [10] C++
4 User-Level Read-copy Update (URCU) Lock-free, trades update performance for read-side performance [11] C
5 Threading Building Block (TBB) Based on separate chaining, scales well for read-heavy workload [6] C++
indicates that this cache line has been modified but there might be
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Fig. 1. A typical NUMA system architecture with four nodes each containing four
physical cores.

invalidate-on-write. State transitions can affect the amount of
inter-cache traffic, and consequently the available cache band-
width for actual work. MESI cache-coherence protocol and its
variants are commonly used in modern processors.

Modern servers are often equipped with multiple nodes each
containing a multi-core CPU and a local DRAM served by one or
more memory controllers (see Fig. 1). The nodes are organized into
a single cache-coherent system with high-speed interconnects.
Accesses to a local node go through a local memory controller,
while requests to remote nodes need to traverse the interconnect
and access a remote controller. Remote accesses typically take
longer than local ones, which is often called the Non-Uniform
Memory Access (NUMA). Data consistency on NUMA systems is
more complicated than on single-node multi-core machines.

3. Experimental environments and configurations

In this section, we first introduce our experimental platforms,
and then describe the five CHTs in detail. Finally, parameter con-
figurations are presented.

3.1. Platforms

In order to produce experimental results as general as possible,
we take AMD Opteron, Intel Xeon E5-2630, Xeon E7-4850, and Intel
Xeon Phi 7120P as our target platforms. The operating system is
Ubuntu 14.04 LTS.

AMD Opteron. There are four Opteron 6172 multi-chip mod-
ules (MCMs) in the 48-core AMD Opteron machine with 128 GB
memory. Its max memory bandwidth is 42.7 GB/s. Each MCM has
two 6-core dies with independent memory controllers. There are
8 memory nodes in this system. The distance between two dies
in the same socket is 1-hop. Two dies from different socket are
situated at 2-hop distance. The overhead between two dies is lower
than the overhead between sockets. The CPU clocks at 2.1 GHz, and
the size of L1, L2, and LLC cache is 64 KB, 512 KB, and 4 MB (per
die) respectively. The Opteron platform uses an MOESI protocol
for cache coherence. The ‘O’ stands for the owned state, which

Intel Xeon E7-4850. This platform consists of four sockets each
with 12 cores (24 hardware threads) and 128 GB memory and is
clocked at 2.3 GHz. The size of L1, L2, and LLC cache is 32 KB, 256
KB and 24 MB respectively. It has 4 memory channels and 3 QPIs.
The max memory bandwidth of E7-4850 is 68 GB/s. This processor
adopts an extended MESI protocol with inclusive cache.

Intel Xeon Phi 7120P. It is a many-core machine based on
Intel MIC architecture. It integrates 64 in-order cores on the same
chip. Each core is clocked at 1.23 GHz and supports 4 hardware
threads. So the total number of hardware threads is up to 244.
The memory hierarchy of Xeon Phi is similar to a conventional
multi-core system. The memory on Xeon Phi is shared among and
accessible to all cores, and it is 16 GB in size. Each core has a 32
KB L1 data cache and 32 KB L1 instruction cache, and a private 512
KB L2 cache, thus presenting a total 31 MB of L2 cache on the chip.
Its max memory bandwidth is 352 GB/s. Xeon Phi implements an
extended MESI protocol, which is differentiated in that the shared
state is extended with a directory-based cache coherence protocol
named GOLS (Globally Owned, Locally Shared), which enables the
sharing of a modified cache line and can avoid broadcast storms
on the address buses. Each cache determines the state of a line via
consulting the GOLS protocol. The global coherence is maintained
by the distributed tag directories (DTDs) that record the coherence
state of each cache line. The address of each line is mapped to a
DTD by a hash function, leading to an even load distribution.

3.2. Concurrent hash tables overview

In the following, we present an overview of the five CHTs
evaluated in this paper.

Frequent cache line transfers is a disaster to concurrency. The
cache-line hash table (CLHT) can reduce the number of cache-
line transfers as many as possible by using cache lines as buckets
[3]. CLHT is a chaining based hash table, which uses pointers to
link other buckets. Additionally, the granularity of coherence is a
cache-line that is 64 bytes on most modern multi-core systems.
Therefore, a 64-byte bucket is split into eight words, six to store
key/value pair, one for concurrency control and one for linking
buckets. Based on this bucket structure, it is straightforward to de-
sign a lock-based hash table. Intuitively, when an update operation
is completed (e.g., a new key/value pair is inserted into the hash
table), at least one write on shared state must be performed.

However, it is suggested that search operations should not
include any stores. Consequently, the search operation of CLHT
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Insert key y
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Fig. 2. A four way Cuckoo hash table. Each key is mapped into two buckets by hash
functions with an associated version counter.

needs to parse the keys of the buckets and return without any
synchronizations. In order to support in-place updates, parsing the
bucket does not simply traverse the keys, but obtains an atomic
snapshot of each key/value pair. The atomic snapshot guarantees
that if a search finds the target key, the value that will be returned
corresponds to that key but not to a concurrent modification.

In this paper, we evaluate both lock based (CLHT-1b) and lock-
free (CLHT-If) variants of CLHT. CLHT-lb uses the concurrency
control word in a cache line as a lock. Search operations traverse
the key/value pairs and return the value if it is matched. Updates
first perform a search to check whether the key exists. If there is
not enough space for an insertion, the operation either links a new
bucket by using the next pointer, or resizes the hash table. As for
CLHT-If, in order to keep the atomicity of key/value pair insertions,
a snapshot_t object is devised. The size of a snapshot_t is 8 bytes,
containing a 4-byte version number and an array of 4 bytes (map).
The snapshot_t provides an interface to atomically get or set the
value of an index in the map. The version number is used to enable
sets/gets to do atomic changes with respect to the other spots in
the map. In short, atomicity is implemented by reading the value
of the snapshot_t object before the atomic section and by using the
version number to get/set the target index in the map using a CAS
on the whole object. For instance, if another concurrent insertion
has already been completed, the current operation will fail the CAS,
because the version number will be different. We then use the
fields of the map as flags that indicate whether a given key/value
pair is valid, invalid, or is being inserted.

Contrary to CLHT, Cuckoo hashing is an open addressing hash
table design. All items are stored in a large array, without pointers
or linked lists. Two techniques are used to mitigate hash collision.
First, items can be stored in one of two buckets in the array, and
they can be moved to the other location if one is full. Second, the
hash buckets are multi-way set associative, i.e., each bucket has B
“slots” for items. A lookup for a key proceeds by computing two
hashes of the key to find buckets b; and b, that could be used
to store the key, and examining all the slots within each of those
buckets to determine if the key is present. A basic 2,4-cuckoo hash
table (two hash functions, four slots per bucket) is shown in Fig. 2.
A consequence of this design is that lookup operations are both
fast and predictable, always checking 2B keys. To insert a new key
into the table, if either of the two buckets has an empty slot, it is
then inserted in one bucket; if neither bucket has space, arandomly
chosen key from one candidate bucket is displaced by the new
item. The displaced item is then relocated to its own alternate loca-
tion, possibly displacing another item, and so on, until a maximum
number of displacements is reached. If no vacant slot is found, the
hash table is considered too full to insert, and an expansion process
is scheduled. The sequence of displaced keys in an insert operation
is defined as a cuckoo path. Write performance of cuckoo hashing

Toaddeto
location 6

v N NN
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12 34 ,5 E‘J”’ 7 8 9\\49\\1\1\ ;2\\1\3\\141\15 16 17 18 19 20 21 22 23 24
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Fig. 3. An insert operation of Hopscotch. To insert the item e with hash value 6, a
linear probe finds the nearest empty entry 13 (because entry 6 is occupied), but it
is too far to move x into entry 13 because H is 4. So Hopscotch moves w to entry 13,
z to entry 11, x to entry 9, and finally empties entry 6.

degrades as the table occupancy increases, since the cuckoo path
length will increase, and more random reads/writes are needed for
each insert.

There are several variants of Cuckoo hashing [14,4,15]. In
our work, we use the Multi-Reader/Multi-Writer Cuckoo hash
(MRMW Cuckoo). MRMW Cuckoo uses algorithmic engineering of
Cuckoo hashing, combined with architectural tuning in the form of
effective prefetching, and an optimistic design that minimizes the
size of the locked critical section during updates. In order to reduce
the number of item displacements and the size of critical sections,
MRMW Cuckoo hash uses a breadth-first search instead of depth-
first search. Each insert optimistically searches for a cuckoo path,
displacing items along the path with the protection of striped fine-
grained spinlocks. Execution terminates at the end of the path or if
the path becomes invalid.

Hopscotch hashing [16] is a scheme for resolving hash collisions
in a hash table using open addressing. It combines the character-
istics of cuckoo hashing, linear probing, and chaining in a novel
way. Hopscotch hash table consists of an array of buckets. The key
notion in Hopscotch is the neighborhood of buckets around any
specific bucket. This neighborhood has the property that the cost
of finding a desired item in any of the buckets in the neighborhood
is the same or very close to the overhead of finding it in the
bucket itself. This property is achieved and maintained in the insert
process.

Fig. 3illustrates an insert operation. The item hashed to an entry
will always be found either in that entry, or in one of the next
H — 1 neighboring entries, where H is a constant (H could be
32/64, the standard machine word size). Each entry includes a hop-
information word, an H-bit bitmap that indicates which of the next
H — 1 entries contains items that are hashed to the current entry’s
neighborhood bucket. In this way, an item can be found quickly
by looking at the word to see which entries belong to the bucket,
and then scanning through a constant number of entries (on most
machines this requires at most two cache-line transfers).

In summary, Hopscotch moves the empty slot towards the de-
sired bucket but cuckoo hashing moves an item out of the desired
bucket and tries to find a new place for it. Both of the sequential and
concurrent Hopscotch are presented in [ 16], we use the concurrent
version in this work.

Read-copy update (RCU) [17] is a concurrency model originally
proposed to optimize the shared data access in the Linux kernel,
instead of merely a concurrent hash table design. For the shared
data structure protected by RCU, readers can access it without a
lock, but writers need to copy this data structure before modifying
it. When the modification is finished, the pointer (pointing to
the old data) is modified to point to new data (copied from the
old) through a callback function appropriately. The key notions of
RCU are quiescent state and grace period. RCU trades the update
performance for read-side performance. We use the quiescent
state based implementation of URCU (version-0.8.8) from liburcu
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to facilitate the integration into our testing framework and the
comparison with other CHTs.

Intel’s Threading Building Blocks (TBB) [6] is a task-based parallel
programming paradigm for multi-core platforms. It provides a
concurrent_hash_map that allows multiple threads to access con-
currently. The concurrent_hash_map maps keys to values in a way
that permits multiple threads to concurrently access values. The
keys are unordered. For each key, there is at most one element
in a concurrent_hash_map, but the key may have other elements
in flight. Member classes const_accessor and accessor are called
accessors. Accessors allow multiple threads to concurrently access
pairs in a shared concurrent_hash_map. An accessor acts as a smart
pointer to a pair. It holds an implicit lock on a pair until the instance
is destroyed or the method release is called on the accessor. It is
based on the classic separate-chaining, where keys are hashed into
a bucket that contains a linked list of entries. TBB inherits all of the
advantages and disadvantages of chaining. It scales very well for
read-dominant workloads. In this work, we integrate TBB version
4.2 into our testing framework.

Resizing a hash table is expensive. In order to simplify the task
of moving elements among buckets during a resize operation, Y.
Liu et al. [13] apply a freezable set abstraction in the nonblocking
hash table that supports resizing in both directions, shrinking and
growing. Approaches to improving cache locality is also proposed.
We tested their implementations in our machines and found that
lock-free list (LFList) achieved the highest throughput. The advan-
tage of LFList is its stable increasing of throughput under different
parameter configurations and hardware platforms. According to
our test, the performances of the dynamic-sized nonblocking hash
tables are roughly similar to TBB. But it is written in Java and the
CHTBench framework is based on C/C++. Thus, we do not include it
for comparison in this work.

3.3. Experimental configuration

CHTs proposed in the literature often exhibit large diversi-
ties in the design (synchronization model, such as lock-based or
lock-free), implementation (hardware-specific optimizations), and
evaluation (synthesized datasets and testing methodologies). This
makes it hard for end users to have an intuitive view about the
performance impact from various aspects. To this end, we designed
a benchmarking framework, CHTBench, for our evaluation. The
framework provides a small set of APIs, and integrates the original
CHT implementations offered by the authors. Keys and values are
both 64-bit integers.

In CHTBench, operations including lookup, remove, and insert
are randomly generated to conform to uniform distributions. It
creates an empty table and n threads at first. Then, using the thread
pining strategies described in Section 4.5 to bind each thread with
a core. The hash table is initialized with n concurrent threads. The
internal work flow of each thread is illustrated in Fig. 4.

All of CHTs are compiled using gcc (version 4.8.2) with the ‘-
03’ flag. In each test duration, n threads are spawned to execute
lookup, remove, and insert operations. A random number ¢ ranging
from 1 to 100 is generated to control the ratio of the three different
operations. In this way, we make sure that each thread performs
a certain proportion of updates and lookups. Unless otherwise
stated, the filling rate of the hash table is 0.5. We do not show
the results with different filling rates because the filling rate of
chaining-based CLHT may be large than 1, and the filling rate of
other open addressing CHTs should be strictly less than 1. Our
test runs a while loop during d milliseconds that executes lookup,
remove, and insert operations determined by a set of parameters.
All of the n threads created at the start of a test will execute the
same benchmark with u% updates and (100 — u)% lookups. Half
of updates are insert operations, the other half are deletes. The

start

wh

no
v

e |
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|
yes — no]

L e

insert & delete & lookup e
end

Fig. 4. The execution flow of a single thread in our testing framework.

benchmarking is configured by parameters described below. d is
the time to run a benchmark in milliseconds. n is the number of
threads created when running a test. The maximum value of this
parameter is 244, 96, 48 and 32 for Xeon Phi 7120, Xeon E7-4850,
Opteron 6172, and Xeon E5-2630 respectively. i is the number of
elements pre-filled in the hash table. f is the filling rate of the
hash table, and it is the result of i divided by the total number
of buckets. r is a value in the range [1...2i], which represents the
position of a randomly generated key. This can guarantee half of the
operations are successful and their structure size remains close to
i. u represents the proportion of updates among all operations.

4. Evaluation and analysis

This section presents a comprehensive analysis on CHTs. The
analysis is conducted from the following seven aspects: scalability,
impact of update, memory hierarchy, latency, thread pinning strat-
egy, synchronization mechanism, and memory consumption. In
most cases, we report results obtained from the four platforms. But
for cases where performance results are similar, we only present
the results on the Intel E5-2630 machine for space constraints.

4.1. Scalability

Throughput is a common performance metric, and in this sec-
tion, we observe how throughput scales with the increasing num-
ber of threads. In this experiment, we employ a compact strategy
(detailed in Section 4.5) to pin threads to cores, and each run lasts
for a duration of 5 s. The final results are the average of 5 runs as
depicted in Fig. 5.

From Fig. 5, we can observe that the throughput curves of
URCU almost overlap with the x axis when the workload contains
10% update operations. Benefiting from less cache line transfers
and better synchronization mechanism, CLHT exhibits the best
performance on four platforms (the difference between its two
versions is marginal). As for Hopscotch, the throughput peaks with
16 threads on the E5-2630 machine and 24 threads on the E7-
4850 machine. Noticed that 16 and 24 are the maximum number
of threads supported by a socket on the two platforms. While for
the AMD platform its peak performance occurs when the number
of threads reaches 6 (this happens to be the maximum number
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Table 2
Memory bandwidth usage of CLHT-Ib on Intel Xeon E5-2630.
Threads 1 4 8 12 16 20 24 28 32
MBW (in GB/s) 15 5.8 11.2 12.4 12.8 12.8 12.8 12.8 12.8
300 : ‘ ‘ ‘ of reducing the overheads in cross memory-node communication,
TBB Cuckoo —&— . . . .
w CLHT-If —&— Hopscotch and it may only perform well in single-socket environments. In
a CLHTb —+— other words, further optimizations are needed to exploit the fea-
§ 200 t tures in NUMA systems. We will present detailed arguments in
g Section 4.5.
é_ Considering that in Fig. 5(a), an inflection point can be observed
2 100} when n is 16, we break the curves into two stages that are sepa-
g rately discussed as follows.
= 2 ‘ ‘ ‘ ‘ ‘ ‘ ‘ Stage 1: The number of threads created ranges from 1 to 16
0 4 8 12 16 20 24 28 32 and hyper—threading is disabled. ObViOUSly, CLHT shows the best
Threads growth rate, and its throughput increases by about 15 Mops/s with
(2) E5-2630. an additional thread. The lock-based CLHT performs better than the
lock-free version. For Hopscotch, adding one thread can speed up
600 88 ST o p—— the throughput by abput 5.5 Mops/s. The performance of Cuckoo is
w URCU Cuckoo —pe=— worse than TBB at this stage.
] CLHT-lb —+— Hopscotch
& Stage 2: At this stage, threads are distributed into two sockets
=3 4007 and hyper-threading is involved in computation. CLHT has a minor
‘g_ increase in throughput, which may be due to the influence of
S o0l I memory bandwidth utilization. As reported in Table 2, the memory
2 bandwidth of CLHT-1b remains unchanged at this stage. While the
c sharp decrease of Hopscotch’s performance implies that cross-
= i socket communication overhead outweighs the gains of more
0 12 24 36 48 60 72 84 96 threads. In addition, TBB and Cuckoo still maintain good growth
Threads rate.
(b) E7-4850. As depicted in Fig. 5(b), the throughput curves on E7-4850 show
similar trends as on E5-2630 except CLHT. On E5-2630, limited
200 ey CLAT —5— by thg memory bandyvidth utilization, the throughput increase of
w URCU Cuckoo —4— CLHT is marginal, while we can see steady growth on E7-4850 (the
8 459l CLHT-Ib —— Hopscotch maximum bandwidth of E7-4850 is large than that of E5-2630).
§ Fig. 5(c) depicts the throughputs on the AMD machine. TBB
L:: 100l achieves better scalability than Cuckoo, Hopscotch, and URCU on
g this four-socket platform (although the overall throughput is still
=4 lower than CLHT). Hopscotch shows optimal performance only
_g 50 when all threads reside in a single die (less than 6 threads). More
[= b a1 threads do not necessarily benefit the overall performance. Instead,
0 negative results can be observed for CLHT and Cuckoo when the
6 12 18 24 30 36 42 48 thread count exceeds a certain threshold, due to the available
Threads memory bandwidth and resource contention.
(c) Opteron. The results on Xeon Phi 7120P are shown in Fig. 5(d). Surpris-
700 ‘ ‘ ‘ ‘ ‘ ingly, both versions of CLHT achieve linear scalability. For CLHT-
. CLATH e Cuckog A Hopscoteh Ib, adding one thread can speed up the throughput by about 2.5
2 600y Mops/s. The reason for this linear scalability is two folds. First,
g s00f each bucket is aligned to a single cache line and the update is in-
2 400l place, which greatly reduces cache-line transfers. And aligned data
3 a00l can avoid false sharing that is critical to the performance on Xeon
S Phi. Second, its fine-grained lock scheme incurs low contention.
3 200 However, not all CHTs can deliver portable scalability like CLHT,
£ 100 the performance of Cuckoo and TBB are very poor, and spawning
QR more threads contributes little to the performance. Detailed expla-
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Threads
(d) Phi 7120P.

1 33 65

Fig. 5. Throughput of CHTs on four platforms, with f 50%, update rate 10%, and 1
million elements initialized.

of threads in the same die). Combining the observations from the
three NUMA platforms, we can infer that Hopscotch is less capable

nations are given in Sections 4.2 and 4.6.

Impact of Data Distributions. In previous experiments, the
key-value pairs are randomly generated. However, in the real
applications, perfect uniform distributions are typically not always
available, so the performance consequences with different data
distribution are of interest. In this subsection, we study the per-
formance impact of workloads following the zipf distribution. The
configurations such as filling rate, update rate, and the number
of elements are the same as in the evaluation of scalability. Fig. 6
shows the throughput for workloads with zipf distribution (other
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Fig. 6. Throughput with zipf distribution.

platforms exhibit similar results that are not shown in Fig. 6). The
throughput of Cuckoo, CLHT, Hopscotch, and TBB decreases by 44%,
51%, 53%, and 30% respectively, as compared with the results from
random distribution (see Fig. 5(a)). The zipf distribution makes the
data access more skewed, and a majority of operations accesses a
small part of data. This intensifies the contention among threads
accessing the same key, which stresses the on-chip interconnects
and incurs more cache-coherent traffic due to synchronization.

Hash Table Resizing. The time that an insert operation takes
will increase as the filling rate of hash table increases. In the
worst case, insert operation will fail because it could not find an
appropriate position after too many retries. Undoubtedly, this has a
greatimpact on performance. In order to address this issue, a resize
operation is adopted by some CHTs. With this operation, CHTs can
create a new hash table whose capacity is larger than the old table,
and all the elements in the old table are copied into the new table,
which inevitably incurs additional overhead. In order to evaluate
the overhead of resizing CHTs, we conduct an experiment, in which
the table is configured as 90% full and the update rate is 40% (35%
insert and 5% remove). Hopscotch selected in our study does not
implement the resize operation. Experimental results show that
Cuckoo has a lower probability to trigger the resize operation than
CLHT and TBB. We own this to Cuckoo’s optimization in finding a
cuckoo path. The throughput is decreased by 5% compared to that
without triggering resize.

Implication 1. Spawning more threads does not necessarily lead
to higher throughput. On the one hand, adding more threads may
saturate the memory subsystem, which either makes the performance
reach a plateau or even degrades the overall performance. On the
other hand, higher concurrency without proper arbitration may incur
interconnect contentions on NUMA systems, resulting in suboptimal
performance. Many-core systems like Xeon Phi show non-trivial dis-
crepancies in achieving scalable CHTs as compared to conventional
multicore systems. Designing concurrent hash tables for this new plat-
form should concern about its architectural features. Skewed data ac-
cess would incur more cache-coherent traffic, and intelligent synchro-
nization algorithms are desired to alleviate performance degradation.

4.2. Impact of update rate

Like the sequential counterparts, CHTs have demonstrated the
superiority for read-dominant workloads. In this section, we ex-
amine the behaviors of CHTs by varying the percentage of update
operations. The initial size of hash tables is configured as 1 million.

As shown in Fig. 7, all of the CHTs achieve the highest through-
put when running with a read-only workload. For the three multi-
socket platforms, we set n to the max number of threads. With
the compact strategy to pin threads to cores, we can avoid the
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Fig. 7. Throughput with different update rates on different platforms, with 1 million
initialized elements.

interference from cross-socket traffic. When update operations are
involved, the performance declines sharply. URCU is very sensitive
to updates, by changing the update rate from 0% to 10%, the
throughput of URCU decreases by 270x. Hopscotch also suffers
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Table 3
Average data cache misses per operation with different update rates on E5-2630.

u TBB URCU CLHT-1b CLHT-If Cuckoo Hopscotch
0% 28.6 85.2 23.6 31.7 335 229

10% 46.3 1169.1 246 349 44.2 28.1

40% 99.2 4046 27.0 37.3 57.2 62.7

80% 159.1 10788 30.7 40.6 66.2 115.5

a steep decrease in throughput compared to the read-only case.
This phenomenon also illustrates the severe scalability issue that
Hopscotch encounters due to the high overhead of synchronization
(other CHTs, such as TBB and URCU, have the same problem).
Cuckoo exhibits the lowest decrease rate among the five CHTs
when the update rate varies from 10% to 80%, which indicates that
Cuckoo is more tolerable to workloads with high update rate.

We use cache misses per operation as the indicator to ex-
plain the performance degradation when update operations are
involved. The data cache misses are measured using VTune Am-
plifier. The results (with 16 threads) are listed in Table 3, which
shows that the update rate and the cache misses per operation are
positively correlated. CLHT works well under both low and high
update rate, which can be inferred from its slight value variance
(the cache misses with the 80% update rate workload is only 30%
higher than that of the read-only workload). However, URCU faces
a 14x and 127 x increase of cache misses when u changes from 0 to
10% and 0 to 80% respectively. Worse, the CPU utilization of URCU is
very low (only 3%) when running the workload with 10% updates,
compared with the 50% CPU utilization of other CHTs. Spawning
more threads does not noticeably increase cache misses, indicating
that the increase of update operations is the main reason for the
sharp decrease of throughput.

Implication 2. Frequent cache line transfers are the enemy of
update performance. Update operations invalidate local cache lines,
which results in not only write traffic to the local memory node, but
also cross-socket messages that are enforced by cache-coherence pro-
tocols and transmitted via on-chip interconnects such as Intel QPI and
AMD HyperTransport. Some concurrent hash tables are designed for
read-dominant workload, so their performance degrades significantly
even when involving only a small amount of update operations. Write-
friendly hash tables often precisely control the layout of critical data
in the cache such as shared variables.

4.3. Cache and main memory

Considering the facts that the intensive memory access is one of
the prominent features of hash tables and the memory bandwidth
is easy to be a bottleneck on such systems [18], in this part, we
investigate the impact of the memory hierarchy on performance.
The histograms in Fig. 8 illustrate how the throughput varies with
the different number of elements initialized.

From Fig. 8(a)-(c), we can see that when the working sets com-
pletely reside in the cache, all CHTs reach the highest throughput.
We validate this by monitoring the bandwidth and traffic between
the LLC and main memory using a tool likwid-perfctr [19]. Once
the working set size exceeds the LLC capacity, the performance de-
grades significantly. In addition, the in-cache performance of CLHT
is much better than the others due to its well-designed cache ex-
ploitation mechanism. We also observed remarkable contentions
in high-level caches with the increasing number of threads (not
shown in Fig. 8). For example, when i is 1000, the performance
of CHTs decreases by increasing thread count. The reason is that
more threads would increase the possibility of different threads
operating on shared data, which incurs synchronization overhead.

Hopscotch’s throughput remains relatively invariable with dif-
ferent initial sizes. With further investigation, we found that the
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Fig. 8. Histograms with different initial sizes, the u is fixed at 10%.

original implementation of Hopscotch hard-coded a fixed-size
memory allocation. This approach sacrifices flexibility but guaran-
tees stable performance. For highly-concurrent applications, both
lock-based and lock-free CHTs internally rely on an efficient mech-
anism for memory management, which is typically built on top
of a third-party or system-provided dynamic memory allocator.
Further evaluation on dynamic memory allocators is left as our fu-
ture work. In addition, Hopscotch failed to run larger benchmarks
(exceeding 100 million elements). This may be attributed to its
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Fig. 9. Latency of search, insert and remove operations on Xeon E5-2630.

weak memory management mechanisms. TBB also exhibits little
variance on AMD Opteron as compared to other platforms.

As aforementioned, the memory hierarchy of Xeon Phi 7120P
is different from main stream multi-core architectures. There are
only two level of caches, and the cores and memory controllers
are connected by a bi-directional ring. As reported in Fig. 8(d), we
can observe lower throughputs for larger initialized hash tables.
Cuckoo and TBB both performs poorly no matter the size of CHTs.

We also tested large workloads on the order of magnitude of
gigabytes (the results are not shown in Fig. 8). The performance
curves show similar trends with running workloads of 1 million
elements, but lower absolute throughputs.

Implication 3. Caches have important implications in accelerat-
ing performance across different architectures. Approaches for fine-
grained control over caches are desired to obtain predictable results,
such as scheduling threads for cache-resident working set to avoid
excessive synchronizations. Static memory allocation is not preferable,
and the impact of dynamic memory allocators needs further investi-
gations especially for large hash tables.

4.4. Latency

Having presented the throughput of CHTs from a macroscopic
view, in this section, we explore the latency experienced by indi-
vidual operations from a microscopic perspective. Understanding
the impact of different algorithmic designs on latency variation is
especially important for latency-sensitive applications.

We measure the timings of hash table operations under the
granularity of a single CPU cycle. In this experiment, the update
rate is configured as 10% and initially the hash tables are filled
with 1 million elements. An operation is successful if its expected
objective is achieved. Otherwise, we call it a failed operation.
Therefore, we have 6 types of operations including get-suc, get-fail,
put-suc, put-fail, rem-suc and rem-fail. Clock cycles are collected
using a simple profiler sspfd [20], and a uniform sampling is used
to calculate the average latency. We only report the results of the
E5-2630 because of space constraints.

As shown in Fig. 9, with more threads involved, resource con-
tentions (memory bandwidth, caches, and memory controller) and
synchronization overheads are surfacing, which inevitably cause

latency increases. In comparison, CLHT (both versions) outper-
forms other CHTSs in most cases, and this superiority can be mainly
attributed to the four ASCY patterns [3] collectively employed in
its design. Excessive cache line transfers necessitated by the cache-
coherence protocol significantly increase the latency of operations.
URCU performs worst because of its copy-on-write mechanism
that involves waiting for a RCU grace period. For Hopscotch, its
latency is sensitive to inter-socket communication (see the steep
curve beyond 8 threads). Moreover, a timestamp field in Hopscotch
will be modified during a remove operation in order to ensure
that concurrent lookup operations will fail, similar to the atomic
snapshot of CLHT. The difference between Hopscotch and CLHT
is that the former needs to store shared variables which results
in extra cache-coherence traffic. In addition, the search phase of
Hopscotch’s update operation involves waiting as a lock is held at
the beginning of this phase. Both of these designs violate the sec-
ond pattern of ASCY, which advocates the search phase of an update
operation should not perform any stores other than for cleaning-up
purposes and should not involve waiting, or retries. Even worse, as
shown in Fig. 9(b), (e), its latency exceeds URCU in the cases of put-
fail and put-suc.

For Cuckoo, search operations counter-intuitively take more
clock cycles than update operations (including insert and remove).
We attribute this to the overhead of looking up elements in long
Cuckoo paths. For the put-fail and rem-suc case, Cuckoo performs
best under low concurrency levels. Hopscotch achieves lowest
latency for put-suc when thread count is less than 6. TBB’s latency
in fail cases remains relatively stable, while in success cases it is
worse or in par with URCU.

Implication 4. The asynchronized concurrency (ASCY) patterns
proposed in [3] are really helpful in reaching portable scalability as
demonstrated by the superior performance of CLHT in our analysis. In
particular, specific patterns in ASCY can help identify potential pitfalls
in implementations of CHTs. For instance, as in the analysis of Hop-
scotch, the shared variable modification in the remove operation and
the wait in the parse phase of update operation are exact validations
of a ASCY pattern. Turning the remove operation into other operations
(get or put) may yield a significant increase in throughput. As latency-
critical workloads are common and user-facing applications need
low tail latencies [21], principled approaches are demanded when
designing low-latency concurrent hash tables.
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Fig. 10. The hardware thread topology of Intel Xeon E5-2630.

4.5. Thread pinning strategies

On multi-core systems, the mapping of threads onto cores,
called thread pinning, is of high importance [22]. In this section,
we use the E5-2630 machine as an example to explain how three
thread pinning strategies work. Fig. 10 shows the topology of this
machine. We use likwid-topology in the likwid toolkit to obtain
the hardware thread topology. There are 2 sockets on it, and each
socket consists of 8 cores with each containing 2 hardware threads.

o Default strategy. Threads are assigned to cores by the OS
scheduler rather than manually. The OS scheduler tries to
improve load-balance among cores. This strategy allows
thread migration between cores during the execution.

o Compact strategy. This strategy assigns successive threads
to cores that are as close as possible in the topology map of
the platform. For example, if we want to create 24 threads,
16 threads are mapped to sy (from cg to ¢7), and remaining
threads are mapped to s; (from cg to cq;). Compact strategy
is beneficial for high data reuse between threads.

e Balanced strategy. Although the compact strategy can take
advantage of shared caches in the same socket, it causes load
imbalance. Thus, in this strategy, we distribute threads to
cores relatively evenly. For example, if we need to create 16
threads, we assign each core from ¢y to cy5 with a single
thread. If the number of threads exceeds the number of
cores, hyper-thread will be used to map threads to cores
with the same strategy. Fig. 10 illustrates a case where 32
threads are assigned to cores using the balanced strategy.
The advantage of balanced strategy is twofold. First, load
balancing is maintained. Second, if the number of threads
is less than the core counts, we can avoid the interference
caused by hyper-threading.

Fig. 11 reports the results of three CHTs (URCU is excluded,
because its results are too low to be displayed on the given scale).

Under the three strategies, CLHT exhibits small variations in
throughput, while for Hopscotch and Cuckoo, wide fluctuations
can be observed from the figure. For E5-2630, using the default
strategy as the baseline, Hopscotch obtains 100% improvement
with the balanced and compact strategy when the thread count
is 8. And with the compact strategy it obtains 200% improvement
when the thread count reaches 16. The reason for the difference
between the balanced and compact strategy is that the former
involves cross-socket communication, but it is not the case for the
later. E7-4850 shows similar trends.

The noteworthy speedup of Hopscotch is due to its static mem-
ory allocation. Hopscotch preallocates and initializes memory on
startup, which causes the physical memory to reside on just one
NUMA node because of the first touch allocation strategy of the
Linux kernel (we use libnuma to evenly allocate physical mem-
ory across NUMA nodes for other CHTs expect for Hopscotch).
However, Hopscotch and Cuckoo (under the compact strategy)

experience a radical performance decline at the interval where the
threads are incremented from 16 to 20 on E5-2630 and from 24 to
36 on E7-4850, because of the fact that cross-socket communica-
tion overhead outweighs the gain of more participating threads.

In comparison, on the AMD machine, CHTs seem not very sen-
sitive to the pinning strategies, which can be explained from two
aspects. First, the strong locality offered by the inclusive LLC of
Intel Xeon makes intra-socket communication efficient. Second,
the incomplete directory protocol of AMD Opteron incurs cross-
socket invalidation traffic when stores are performed on owned
and shared cache lines even if all sharers are in the same socket.
Thus, the intra-socket performance behaves similarly to the cross-
socket. Moreover, Hopscotch performs better with the default and
balanced strategy when threads are spread to multiple sockets.
This benefits from the balanced workload distribution given the
cross-socket insensitivity on this platform.

On Phi 7120P, CLHT performs exceptionally well under all
strategies (linear increase in throughput). No noticeable disparity
in throughput can be observed for Cuckoo (see the almost overlap-
ping curves). In contrast, Cuckoo obtains better performance under
the default strategy on the other three NUMA systems (with high
thread counts). As for Hopscotch, the compact strategy achieves
better performance when the thread count ranges from 1 to around
150. The default strategy prevails over others eventually for both
CLHT and Hopscotch. In contrast to explicit pinning strategies
that would cause more cache misses and higher memory access
latency due to the small per-core L2 cache, the default strategy
that relies on the OS scheduler to dynamically migrate threads
across cores, can alleviate resource contentions and better utilize
the cache subsystem of Xeon Phi. In addition, Xeon Phi acts like
a symmetric multiprocessing (SMP) system, and the cores have
the same distance to the main memory. Placing threads in dif-
ferent physical cores incurs similar overhead as the cross-socket
overhead on NUMA systems, but the cross-core overhead is much
lower, thanks to the fast bidirectional ring interconnect.

Implication 5. No universal conclusions can be made in compar-
ing the three thread pinning strategies, because no single strategy
performs portably well over different CHTs and hardwares. For ex-
ample, on Intel Phi, CLHT performs better with the default strategy
but differently on other platforms. And, Cuckoo’s throughput shows
little variance under the three strategies on Intel Phi. Thus, to reason
about abnormalities, it is important to understand the peculiarity
caused by the combination of certain CHT designs, pinning strategies,
thread count, and hardware-specific features. This poses non-trivial
burdens on developers, and the ideal solution could be that the runtime
switches different strategies adaptively by monitoring the change of
hardware and workload.

4.6. Synchronization

Synchronization is an essential part in designing CHTSs, and it
guarantees coordinated access to shared objects among concurrent
reads and writes. If not dealt properly, it would become a major
impediment to scalability. In this part, we discuss synchronization
mechanisms employed in the CHTs and their impact on perfor-
mance.

As we can see from Fig. 7, CLHT performs better than all other
CHTs especially on Phi 7120P. Besides the well-designed data
structure, we attribute this scalability to its underlying synchro-
nization mechanism. CLHT-lb uses an atomic snapshot technique
to synchronize readers and writers, which incurs low synchroniza-
tion overhead. Between writer threads, it use a very simple per-
bucket spinlock implemented with the Fetch-and-Increment (FAI
that is well supported by Xeon Phi) atomic operation. As a result,
even under high concurrency, the fine-grained lock causes very low
contention. Simple lock plus low contention deliver ideal scalabil-
ity [5]. The lock-free version of CLHT uses a snapshot structure,
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Fig. 11. Throughputs measured using different pinning strategies on four platforms, Xeon E5-2630, Xeon E7-4850, AMD Opteron 6172, and Xeon Phi 7120P from top to

bottom respectively.

which is 8 bytes in size and can be loaded, stored, or CASed with
a single operation (i.e. atomically). A version number in its bucket
is used for synchronizing concurrent writers, and a map is used to
indicate three states (i.e. valid, invalid, or being inserted). These
design choices make CLHT's performance outstanding.

Under read-only workload, Hopscotch even outperforms CLHT
(not shown in the figure). But once the update operation is in-
volved, the performance decrease significantly. The situation dete-
riorates even further as the percentage of update grows. This illus-
trates the significance of the synchronization scheme. Hopscotch
use a TTAS Lock to coordinate writer threads. In order to alleviate
synchronization overhead, a timestamp is used between readers
and writers. The synchronization overhead between writers is
much higher. The number of locks in Hopscotch is configured to
be equal to its thread count, which causes more contentions as
compared to CLHT. Worse, the TTAS Lock is not scalable. These
reasons explain the severe performance degradation.

Cuckoo deploys a striped fine-grained spinlock based on
Compare-And-Swap (CAS) atomic primitive for two kinds of syn-
chronization (i.e., reader and writer, writer and writer). TBB uses
a fine-grained per-bucket lock similar to lock-based CLHT. The

difference is that TBB’s per-bucket lock controls more items than
CLHT, while in CLHT only 3 key-value pairs are guarded by a lock.

As shown in Figs. 5(d) and 7(d), on Xeon Phi, CHTs behaves
remarkably different from the other three NUMA systems. Xeon
Phi employs an extended MESI cache-coherence protocol that uses
GOLS (Globally Owned Locally Shared) to simulate an owned state
to permit sharing a modified line, a store to a cache line in GOLS
state (besides the share state) also induces invalidation traffic.
High coherence traffic can easily saturate its ring interconnect.
CLHT’s design fits pretty well with the architecture of Xeon Phi.
Cuckoo exhibits poor performance on Xeon Phi (even under read-
only workload), because in each lookup operation, the buckets
associated with a given hash value are locked. This severely limits
the concurrency, and in turn degrades its performance on this
platform.

Implication 6. Synchronization plays a critical role in achieving
high performance CHTs. However, designing an efficient synchroniza-
tion scheme is challenging given a wide variety of factors ranging from
low-level atomic primitives and architectural features to high-level
lock algorithms and concurrency models. Obtaining portable perfor-
mance is even more challenging as shown in our analysis, such as the



138 Z. Chen et al. / Future Generation Computer Systems 82 (2018) 127-141

Table 4
Memory usage (MiB) on the E5-2630 machine.
i TBB CLHT URCU Cuckoo Hopscotch
10° 0.6 1 0.6 63 608.6
10* 2.2 15.4 1.8 63 608.6
10° 14.1 344 7.8 63 608.6
108 80 78.4 439 101 608.6
107 857 1024 645 633 608.6
108 5.5 GiB 8 GiB 5GiB 23GiB -

abnormal low performance on Xeon Phi except for CLHT. In practice,
to reason about the performance of synchronization mechanisms, we
should have a holistic understanding of the multi-faceted influence of
these factors. For example, we should know how to choose a preferable
atomic primitive on a specific platform when designing locks that in
turn depends on the cache coherence to achieve better performance.
Furthermore, some locks behave optimally under high contention, but
others are more competitive when the contention is low. So, it would
be desirable to implement adaptive locks to take advantage of the
merits of different locks.

4.7. Memory consumption

For memory-intensive applications like CHTSs, besides the per-
formance requirement, memory consumption is also important
especially for scenarios where physical memory capacity is con-
strained. Below, we dissect the memory usage except for Hop-
scotch (as mentioned, the implementation of Hopscotch in our test
uses a fixed memory allocation strategy).

Table 4 shows the memory usage of CHTs configured with
16 threads, 10% update, and different initial sizes. The memory
consumption is measured using the system monitoring tool. With
the same amount of elements, Cuckoo is the most memory efficient
CHT for large workloads, and URCU is second to Cuckoo and is very
memory-efficient for small workloads. CLHT and TBB consume
several times more memory than Cuckoo and URCU. Next, we
analyze the reason behind the discrepancy of memory usage.

Cuckoo’s memory efficiency mainly comes from two design
choices. The first is that Cuckoo is designed with a higher set-
associativity that greatly improves space utilization, and the sec-
ond is the use of version counter instead of pointer to connect
buckets, which improves memory efficiency especially small for
key/value pairs. Both CLHT and TBB use a fine-grained per-bucket
lock mechanism based on the classic separate chaining. While
often faster, pointers cost more memory for workloads containing
a large amount of elements. With fine-grained locking, we trade
space for high performance, while the drawback is that less items
can be stored with the same amount of physical memory.

Implication 7. On the one hand, lower memory consumption allows
larger workloads to be served, and reduces the possibility of page
swapping in the OS, which would decrease the performance impact
of execution environment. On the other hand, memory-efficiency de-
pends on internal data management mechanisms that may also affect
performance to some extent. Chaining hash consumes more memory
because of an extra next pointer, especially for CLHT that requires
a pointer for each cache line, while Cuckoo hash is more memory-
friendly due to its high capacity design. Fine-grained synchronization
also contributes to memory consumption, for example, CLHT has a
lock for each cache line. In summary, optimized data organization and
synchronization granularity like CLHT achieve high performance but
at the cost of larger memory consumption.

4.8. CHT with hardware transactions

Transactional Memory (TM) is a concurrency control paradigm
that provides atomic and isolated execution for code regions. It is
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Fig. 12. Throughput of the fine-grained locking and the global HTM-based lock on a
Linux workstation with to Intel Broadwell EP/EN/EX processor (32 physical cores/64
logical cores) and 64 GB memory installed. The CPU clocks at 2.1 GHz and the size
of the three-level caches are 32 KB, 256 KB and 40 MB respectively. The update rate
is 10% and the initial size is one thousand and one million respectively.

considered to be one of the most promising solution to address
the problem of programming multi-core processors. This model
has the potential to provide the scalability of fine-grained lock-
ing while avoiding common pitfalls of lock composition such as
deadlock. Today, both software and hardware TM methods are well
researched.

In this section, we study the impact of hardware transactional
memory (HTM) on constructing concurrent hash tables (only the
Intel Restricted Transactional Memory is evaluated). Our HTM-
based CHTs follows CLHT’s design but using a different synchro-
nization mechanism. At first, we compare a coarse-grained lock
based on HTM using the optimization techniques presented in [23]
with a fine-grained lock using traditional lock method. We run
workloads with one thousand (less than the capacity of private
cache) and one million (large than the capacity of L3 cache) ini-
tialized elements respectively, and each workload with 10% update
operations. The final results are the average of 5 runs as depicted
in Fig. 12. For the workload with one million elements, both the
fine-grained lock version and HTM variants show good thread
scalability. The throughput increases as the number of cores. Our
implementation of HTM lock obtains higher performance. Specifi-
cally, the performance under the fine-grained lock is 81% of HTM-
based lock. However, when the size of initial elements is less than
the capacity of private cache, the fine-grained lock outperforms the
HTM version. The reason is that HTM global lock encounters more
data conflicts which cause frequent transaction abort.

From the perspective of the complexity, HTM-based CLHT is
much easier to implement than the one with fine-grained lock. It
uses a single global lock to protect the critical section, while we
need to pay much more attention to implement a fine-grained lock
when constructing concurrent data structures. Furthermore, the
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Fig. 13. Throughput of the traditional fine-grained lock and HTM-based fine-
grained lock on Intel Broadwell. The update rate is 10% and the initial size is one
thousand and one million respectively.

fine-grained locking scheme consume more memory. For example,
CLHT take a cache line as a bucket, it split a cache line into 8 words,
one for synchronization, six for key/value storage and one for
pointer linking to the next bucket. If created 1024 x 1024 buckets,
we need pay 8 MB more memory for the storage of synchronization
variables.

On the other hand, one may ask if it is necessary to optimize the
fine-grained locking with HTM when it satisfies the performance
requirement very well. To answer this question, we conduct a
comparison between two versions of CLHT under fine-grained
locking, one with HTM and one without. As shown in Fig. 13, the
performance difference is negligible under the two settings (we get
the same results wheniis set to 1 million) except for the case where
nis larger than 48 in the right figure. The reason is that fine-grained
locks can effectively prevent multiple threads from accessing the
same memory address at the same time. In such a case, it is
not meaningful to adopt HTM to achieve higher performance. In
Fig. 13(a), when the number of threads exceeds 48, HTM-based
lock exhibits better performance, because the contention increases
with more threads involved, but HTM can promote parallelism if
conflicts are not dominant.

Implication 8. According to the experimental results, we make three
observations. Firstly, when dealing with a large-scale workloads, using
HTM to construct concurrent hash table would be beneficial from
two aspects: (i) the performance and scalability is competitive; (ii) it
achieves the goal of reducing memory consumption and simplifying
programming. Secondly, the workloads can fit in the on-chip cache,
an HTM-based global lock may result in poor performance because
of frequent transaction aborts due to data conflicts. Lastly, traditional
fine-grained locks can offer good thread scalability and performance.
Under this premises, using a fine-grained lock enhanced with HTM
neither brings the advantage of simplifying concurrency control, nor
improves the overall performance.

5. Related work

While sequential hash tables have been studied for decades,
the research on CHTs [24,17,25,26,13,15,27-30] has been gaining
popularity in recent years. In the following, we review the most
relevant work to concurrent hash tables.

Synchronization. As pointed by Attiya et al., due to the con-
straints of cache coherence protocol, expensive synchronization in
concurrent algorithms cannot be eliminated [31]. What can people
do is to design good synchronization mechanisms to alleviate the
synchronization overheads on multi-core systems. David et al. [5]
present a thorough study of synchronization schemes on four rep-
resentative multi-core systems. In a recent work, the same group of
authors suggest [3] that a concurrent search data structure (CSDS)
will perform better if it is designed in resemblance to sequential
implementations. With four ASCY patterns in mind, they designed
a concurrent hash table, which achieves high throughput and low
latency due to its optimized cache line transfer. Gramoli [32]
evaluated 5 different synchronization techniques using a set of
31 concurrent algorithms and developed a new micro-benchmark
suite, Synchrobench, to measure the impact of synchronization on
concurrent algorithms.

RCU [17] is a concurrent programming technique that is widely
used in the Linux Kernel. As discussed in [12], RCU eases lock-
based programming when locks are dynamically created and de-
stroyed, which occurs frequently in concurrent programs. Desnoy-
ers et al. [12] proposed the design of an user-level RCU called
URCU that aims at improving read-side performance. [33] presents
a predicate RCU to scale the performance under concurrent update.
According to our evaluation, the write performance of the predi-
cate RCU is still very limited.

CHTs for memcached-like systems. Memcached [2] is an in-
memory key/value store for Web applications. In order to improve
the memory efficiency and throughput, B. Fan et al. [15] imple-
mented the first concurrent Cuckoo hashing algorithm that sup-
ports multiple-reader single-writer access to shared data. In [4],
a concurrent cuckoo hashing that supports multiple writers was
proposed. CPHash [27] is a cache-partitioned hash table. It splits
the hash table into partitions and assign each partition to the L1/L2
cache of a particular core. Instead of running the lookup/insert
operation locally, CPHash uses a message passing mechanism to
batch queries, which can not only increase parallelism but also
reduce the number of cache line transfers.

NUMA architecture and heterogeneous systems. Intel an-
nounced NUMA compatibility for its X86 and Itanium servers
in the late 2007 with the Nehalem and Tukwila CPUs [34], and
AMD implemented NUMA with its Opteron processor using Hy-
perTransport [35]. Li et al. made comprehensive tests over modern
hosts to show the importance of NUMA-awareness [36]. Severe
shared cache misses and remote memory accesses are two main
challenges for achieving high performance on NUMA machines.
Locality-Aware Work-stealing (LAWS) scheduler [37] was de-
signed to solve this problem. In LAWS, tasks are evenly partitioned
by a task allocator and the data set is replicated to all memory
nodes. And Z. Majo [38] designed a scheduling algorithm, N-MASS,
which reduces data locality to avoid the performance degradation
caused by cache contention on NUMA systems. Designing hash
tables and other algorithms [39-41] for heterogeneous systems
such as GPUs are also gaining popularity, we plan to conduct
performance evaluations on these systems in future work.

6. Conclusion
Concurrent hash table is a crucial component in modern soft-

ware systems. A range of CHTs has been proposed to tackle practi-
cal problems with hardware-specific optimizations and intricate
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algorithm designs. However, to better understand the pros and
cons of existing CHTs, an in-depth and comprehensive analysis is
needed. To this end, we develop a testing framework to evaluate
5 state-of-the-art CHTs in a unified way. The measurements and
comparisons are conducted over a wide spectrum of metrics, span-
ning from macroscopic throughput to microscopic latency, from
on-chip caches and to main memory, from complex synchroniza-
tion mechanisms to portable optimizations, etc. To our knowledge,
this study is the most extensive evaluation on CHTs to date. We
believe the implications made in this paper are valuable for both
future research and algorithm development in practice.
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