
Future Generation Computer Systems 28 (2012) 1177–1193
Contents lists available at SciVerse ScienceDirect

Future Generation Computer Systems

journal homepage: www.elsevier.com/locate/fgcs

Modeling and analyzing the impact of authorization on workflow executions✩

Ligang He a,∗, Chenlin Huang b, Kewei Duan c, Kenli Li d, Hao Chen d, Jianhua Sun d, Stephen A. Jarvis a

a Department of Computer Science, University of Warwick, Coventry, UK
b Institute of Software, School of Computer Science, National University of Defense Technology, Changsha, China
c Department of Computer Science, University of Bath, Bath, UK
d School of Computer and Communication, Hunan University, Changsha, China

a r t i c l e i n f o

Article history:
Received 28 September 2011
Received in revised form
15 February 2012
Accepted 1 March 2012
Available online 5 March 2012

Keywords:
Modeling
Authorization
Workflow
RBAC

a b s t r a c t

It has been a subject of a significant amount of research to automate the execution of workflows (or
business processes) on computer resources. However, many workflow scenarios still require human
involvement, which introduces additional security and authorization concerns. This paper presents
a novel mechanism for modeling the execution of workflows with human involvement under Role-
based Authorization Control. Our modeling approach applies Colored Timed Petri-Nets to allow various
authorization constraints to be modeled, including role, temporal, cardinality, BoD (Binding of Duty),
SoD (Separation of Duty), role hierarchy constraints etc. We also model the execution of tasks with
different levels of human involvement and as such allow the interactions betweenworkflowauthorization
and workflow execution to be captured. The modeling mechanism is developed in such a way that the
construction of the authorization model for a workflow can be automated. This feature is very helpful for
modeling large collections of authorization policies and/or complex workflows. A Petri-net toolkit, the
CPN Tools, is utilized in the development of the modeling mechanism and to simulate the constructed
models. This paper also presents the methods to analyze and calculate the authorization overhead as
well as the performance data in terms of various metrics through the model simulations. Based on
the simulation results, this paper further proposes the approaches to improving performance given the
deployed authorization policies. This work can be used for investigating the impact of authorization, for
capacity planning, for the design of workload management strategies, and also to estimate execution
performance, when human resources and authorization policies are employed in tandem.

© 2012 Elsevier B.V. All rights reserved.
1. Introduction

Business processes or workflows are often used to model
enterprise or scientific applications [1–4]. A workflow consists
of multiple tasks with ordered execution, i.e., a task can only
start execution after another task in the workflow has completed
(the former task is called the latter’s child). It has received
considerable research interest to automate workflow executions
on computer resources, which has led in part to BPEL being
proposed as a standard for specifying and executingworkflows [4].
However, many workflow scenarios still involve human activities
and will be comprised of a mixture of human tasks and computing
tasks (which we term a hybrid workflow in this paper) [5–9].
For example, in IT-based video production workflows [9], human
interactions are still required for decision making and artistic

✩ The preliminary version of this paper was presented in the 8th IEEE Intl. Conf.
on Services Computing (SCC’11), 2011.
∗ Corresponding author. Tel.: +44 24 76573802; fax: +44 24 76573024.

E-mail address: liganghe@dcs.warwick.ac.uk (L. He).

0167-739X/$ – see front matter© 2012 Elsevier B.V. All rights reserved.
doi:10.1016/j.future.2012.03.003
choices (e.g., video editing decisions). In mortgage business
processes in banks [10], various human tasks (e.g., a manual
approval step is required if the mortgage value exceeds some
amount) could be involved in order to make the final decisions.
Indeed, in many application domains, the completion of a task in
a workflow replies on the subjective judgment of human. It would
be very difficult, if not possible, to use computers to completely
replace humans in such scenarios.

In traditional workflow management systems, human inter-
actions in a workflow are not well supported, and therefore a
workflow with human involvement can be regarded as a semi-
automated workflow [11]. Motivated by the requirements of in-
tegrating human interactions into business processes, research
exists to support human tasks in workflow contexts. WS-
HumanTask and BPEL4People, which have been proposed to over-
come the lack of support for human activities in BPEL [11,10], are
the exemplar products of these research efforts. WS-HumanTask
and BPEL4People enable the integration of human tasks into busi-
ness processes, and therefore the executions of theworkflows con-
taining human tasks can also be automated [11,10].

Human involvement introduces authorization concerns, requir-
ing restrictions on who is allowed to perform which tasks at what

http://dx.doi.org/10.1016/j.future.2012.03.003
http://www.elsevier.com/locate/fgcs
http://www.elsevier.com/locate/fgcs
mailto:liganghe@dcs.warwick.ac.uk
http://dx.doi.org/10.1016/j.future.2012.03.003

1178 L. He et al. / Future Generation Computer Systems 28 (2012) 1177–1193
time. Research has been conducted to attach authorization infor-
mation (such as roles and permissions) to activities, and to im-
pose authorization constraints (such as separation of duty) on
workflowexecutions [12–18]. For example, in BPEL4People, autho-
rization concepts such as roles and permissions are defined, and
various authorization constraints are supported, including cardi-
nality constraints, separation of duty, binding of duty, etc. The
authorization specified in BPEL4People can be categorized as Role-
based Authorization Control (RBAC), under which users are as-
signed to certain roles, while the roles themselves are associated
with prescribed permissions.

When we assess resource capacities, or evaluate the perfor-
mance of workflow executions on supporting platforms, it is often
assumed that when a task is allocated to a resource, the resource
will accept the task and start the execution once a processor be-
comes available. However, when human activities and authoriza-
tion constraints are taken into account, the issue can become
complex. The following example illustrates such a situation.

A bank will need both human activities and computing-based
activities to support its business. A workflowwill typically contain
both Human Tasks (HT) and Computing Tasks (CT): A human task
may consist of a person (or a user in the RBAC terminology)with an
official position (or a role in RBAC, e.g., a branch manager) signing
a document; a computing task may involve running an application
on a computing resource to assess risk for an investment. Further,
the computing applications may be hosted in a central resource
pool (e.g. a cluster), and the invocation of an application may
be automated without human intervention, which we term an
Automated Computing Task (ACT), or for security reasons, can only
be initiated by a userwith a certain role and be executed under that
role/user, which we term a Human-aided Computing Task (HCT).
The following authorization constraints are often encountered in
such scenarios [17]: (1) Role constraints: A human taskmayonly be
performed by a particular role; a computing application may only
be invoked by assuming a particular role; (2) Temporal constraints:
A role or a user is only activated during certain time intervals
(e.g., a staff member only works in morning hours); (3) Cardinality
constraints: The maximum number of tasks (computing or other)
running simultaneously under a role is N; (4) Separation of Duty
constraints: If TaskA (HT or CT) is run by a role (or a user), then Task
B must not be run by the same role (or user); (5) Binding of Duty
constraints: If Task A is run by a role (or user), then Task B must
be run by the same role (or user); (6) role hierarchy constraints: if
multiple roles are eligible and available to run a task, the taskmust
only assume the role with the least privilege.

In real-world applications, a more complex task may contain
both human and computing activities. For example, a taskmay first
require a person to handle the task, and then require a computing
application being invoked to compute additional data. Such a
complex task can be regarded as the combination of an HT and an
ACT/HCT. Therefore, in this paper, we assume that the time spent
by a user handling an HCT is negligible.

It is common to find such authorization constraints and inter-
action between human and automated activities; our domains of
interests include healthcare systems [19], the video management
domain [9] and the manufacturing community [6,20]. Human in-
tervention and associated authorization clearly affects the process-
ing of tasks and impacts on both application-oriented performance
(e.g. mean response time of workflows) and system-oriented per-
formance (e.g. utilization of the computing resource pool). Obtain-
ing these performance data will be critical in capacity planning,
designing authorization policies and developing workflow man-
agement strategies.

To date, little attention has been paid to investigating perfor-
mancewhen running hybridworkflows under deployed authoriza-
tion policies. The purpose of this paper is to model execution and
authorization of hybrid workflows that are supported by cluster-
based resource pools. Various types of authorization constraints
are modeled in this paper, including role constraints, temporal
constraints, cardinality constraints, Binding of Duty (BoD), Sepa-
ration of Duty (SoD) constraints, and role hierarchy constraints.
Workflow executions, as well as the interactions between work-
flow execution and authorization controls are also modeled in this
paper. In this paper, the Timed Color Petri-Net (TCPN) formalism
is applied to model workflow authorization and execution. More-
over, the modeling mechanism is developed in such a way that the
model construction can be automated. This feature is very helpful
in modeling a large collection of authorization policies or complex
workflows.

The constructed models are then simulated and analyzed
to obtain various performance metrics, including authorization
overhead, system-oriented performance (e.g., utilization and
throughput) and application-oriented performance (e.g., response
time of workflows).

A high level Petri-net tool, called the CPN Tools [21,22], is uti-
lized to implement and simulate the model. Based on the model
simulations, the methods are proposed to analyze the authoriza-
tion overhead and the performance bottlenecks in the system. Fur-
ther, we propose the approaches to enhancing performance under
the specified authorization constraints.

The work presented in this paper can be used for capacity plan-
ning, designingworkloadmanagement strategies, or for estimating
application performance in the presence of authorization policies.
Since we can calculate from the models the overhead caused by
the authorization constraints, this work also provides insight into
how to tune performance by adjusting authorization policies so as
to achieve a good balance between performance and security over-
heads.

Note that this paper investigates the executions of hybridwork-
flows (containing both computing tasks and human tasks) at an
abstract level. Whether the execution of a hybrid workflow is
semi-automated or automated is an implementation issue (de-
pending on whether the workflow execution is programmed us-
ing BPEL4People or traditional workflow management methods),
which does not affect the results obtained in this paper.

The remainder of this paper is organized as follows: Section 2
discusses related work; Section 3 introduces the Timed Color
Petri-Net formalism applied in this paper; workflow authorization
and execution are modeled in Section 4; model simulations and
overhead analysis are discussed in Section 5. Section 5 also
presents the approaches to reducing authorization overheads and
improving performance. Section 6 presents the simulation results
and, Section 7 concludes the paper.

2. Related work

Workflow management has been extensively studied and as
a result is well documented in related literature [23,1,24,3].
Much of this research is aimed at automating the execution,
and enhancing the performance, of workflows in parallel and
distributed systems [1],43. Some of this research has also utilized
Petri-nets to model workflow execution. However we note that
their work does not formally investigate the performance of
workflow execution under authorization constraints.

Research has also been conducted on the topic of security and
authorization constraints in the workflow context [25,14,26–28,
16]. Some of this research also uses Petri-nets to model autho-
rization constraints. The work presented in this paper differs from
this research in the following respects: First, the work found in the
literature [26] does not differentiate human tasks and computing
tasks, and does not model the interactions between workflow au-
thorization and workflow execution. The work presented in this

L. He et al. / Future Generation Computer Systems 28 (2012) 1177–1193 1179
paper models resource competition and interactions between the
authorizationmodule and the executionmodule. Second, themod-
eling approaches presented in previous literature were not devel-
oped so that the model constructions could be automated. Third,
it is assumed in [25,29,14,24] that a task can only be run under
one role. This assumption simplifies the modeling process. How-
ever, the assumption is not always true. It may well be the case
that a task is allowed to run under a range of roles. The relaxation of
this assumption is especially necessary when temporal constraints
of roles’ availability are taken into account. In so doing, when one
role is not available, another activated role may be assigned to run
the task, so that the workflow execution can still progress. In this
work, the role and user assignments to tasks are modeled in a flex-
ible fashion, which allows a task to be run under a selection of
roles/users. Finally, previous work only models the execution or
authorization of a singleworkflow [16,30,31]. Themodelingmech-
anism developed here however, is able to model the simultaneous
execution of multiple workflows.

The work in the literature [32,29,33,16,5] also investigates the
workflow authorization and task delegation. However, their work
focuses on guaranteeing that the authorization policies can be
enforced properly when a workflow is being processed in the
system. The focus of this paper is to analyze and obtain the
authorization overhead as well as other performance data when
running the workflows under the authorization policy. Further,
this paper proposes the methods to enhance the performance,
given the specified authorization constraints. This work can be
used to provide support for system capacity planning or workload
management and scheduling.

The Multi-layered State Machine (MLSM) is another method
used in the literature [5,33] to model workflow authorization.
However, the MLSM method is mainly used to guarantee that
the authorization constraints are satisfied in the workflow
environment, and the method itself cannot simulate and obtain
the quantitative performance of the workflow execution. In order
to obtain the performance data, the constructed MLSM structure
needs to be converted to the Petri-nets before the performance
analyses can be conducted [5,33]. Further, the work in [5,33] does
not analyze the overhead caused by the authorization control, and
does not investigate the methods to improve performance under
authorization control, either.

In previous work [34], we have applied Generalized Stochastic
Petri-Net (GSPN) theory to model workflow executions under
Role-based Authorization Control, and then used standard Petri-
net analysis techniques to theoretically calculate the performance
from the constructed models. Although GSPN is adequate for
the scenarios investigated in [34], the work did not model the
workflows consisting of both human tasks and computing tasks.
Also, since GSPN cannot express the temporal attributes associated
with tokens, we cannot analyze the authorization overhead caused
by each type of authorization policy in the models constructed
using GSPN. Moreover, the work in [34] did not investigate
the methods to improve the performance given the specified
authorization constraints. In this paper, wewill model both human
and computing tasks, show how to calculate the authorization
overhead in the constructed TCPN models, and based on the
simulation results of the models, propose the methods to improve
the performance by adjusting the scheduling strategy and the
quantity of resources.

In addition, it is very difficult for the GSPN modeling scheme
in [34] to achieve automated component assembly. It becomes
tedious and error-prone when we need to model a large collection
of authorization policies. In this work, the model is constructed
in a modular fashion and individual authorization modules can be
assembled automatically to form the authorization model for the
entire system.
Another major difference between this work and the work
in [34] is that in [34] we applied a theoretical approach to
calculating the performance from the constructed models. In this
paper, the developedmodelingmechanism has been implemented
and the performance data can be obtained by running the model
simulations. These two approaches complement each other, but
the simulation approach is more amenable to evaluating the
irregular models (e.g., the timers associated with the timed
transitions may not be exponentially distributed).

3. Timed Color Petri-Nets

The formal definition of a Color Petri-Net (CPN) differs
depending on the source literature [25,35]. The CPN formalism
applied in this paper is the same as that defined in [21], in which a
CPN is defined as in Eq. (1).

CPN = (P, T , AR, CS, V , CF ,G, A, I) (1)

where:

1. P is a finite set of places
2. T is a finite set of transitions such that P ∩ T = Φ .
3. AR ⊆ P × T ∪ T × P is a set of directed arcs.
4. CS is a finite set of non-empty color sets.
5. V is a finite set of typed variables such that Type[v] ∈ CS for all

variables v ∈ V .
6. CF : P → CS is the color set function that assigns a color set to

each place.
7. G: T → EXPRV is a guard function that assigns a guard to each

transition t such that Type[G(t)] = Bool, where EXPRV denotes
the set of expressions over the set of variables V provided
by the modeling language, Type [e] denotes the type of an
expression e ∈ EXPRV , i.e., the type of the values obtainedwhen
evaluating e. The guard function defined in [21] represents the
substantive difference from the CPN definitions found in other
literature [25].

8. A: AR → EXPRV is an arc expression function that assigns an
arc expression to each arc ar such that Type[A(ar)] = CF(p)MS ,
where p is the place connected to the arc ar and CF(p)MS is the
set of all multisets over CF(p).

9. I: P → EXPRΦ is an initialization function that assigns an
initialization expression to each place p such that Type[I(p)] =

CF(p)MS .

A CPN model consists of places (defined in P) and transitions
(defined in T), and a number of directed arcs (defined in AR). Each
place can be marked with a number of tokens, and each token
has a data value, which is termed the token color. The data value
can be a primitive data type, such as an integer and a string, or
a complex structure consisting of other primitive data types or
complex structures. The number of tokens and the token colors
in each place, called a marking, represents the state of the model.
A place is associated with a data type (termed a color set), which
is defined in CS. A place’s color set determines the set of token
colors that the tokens in the place are allowed to possess. The
model determines whether a token can be fired through the arc
functions associated with the arcs (defined in A) and/or guard
functions associated to transitions (defined in G). An arc function
evaluates to a set of tokens, which determine the type and number
of tokens that can pass through the arc. An arc function or a guard
function can contain a number of variables (defined in V) as well as
the operations (e.g. comparison) and logical operators (e.g. if–else
branch) on these variables. Therefore, an arc function or a guard
function may evaluate to different values for different tokens.

A Timed Color Petri-Net (TCPN) is presented in [21] as an
extension of a CPN. In a TCPN, a token can be associated with
both a color and a time stamp. Furthermore, a CPN model has

1180 L. He et al. / Future Generation Computer Systems 28 (2012) 1177–1193
(a) HCT. (b) HT.

Fig. 1. Role and user assignment module for HCT and HT.
a global timer, which records the current global time of the
system, denoted as gt . The time stamp attached to a token t ,
symbolized as t@ts, indicates the earliest time when the token can
be processed. In addition to the arc and guard function, whether a
transition can fire or not in a TCPN model is also controlled by the
model’s global timer and the tokens’ time stamps. The rule is that
besides satisfying the arc and the guard functions associated with
a transition, the tokens must have time stamps which are not later
than gt . The model remains at a given model time as long as there
are enabled transitions. If there is not such an enabled transition,
the global timer is advanced to the earliest model time at which at
least one transition is enabled.

The readers can refer to [21] for the detailed information of CPN
and TCPN used in this paper.

4. Models

Both human tasks and human-aided computing tasks require
authorization before execution. In this section, we first model
various types of authorization control using TCPNs. These include:
(1) Role constraints; (2) Temporal constraints; (3) Role and user
assignment; (4) Binding-of-duty constraints; (5) Separation-of-
duty constraints; (6) Cardinality constraints; (7) Role hierarchy
constraints. We then present how to automatically assemble
individual authorizationmodules to form the authorization control
module for the entire workflow. Finally, we combine the workflow
authorization module with workflow execution, and discuss the
interactions between them.

4.1. Role and user assignments subject to temporal and role hierarchy
constraints

As discussed in the banking example in Section 1, a HCT of
a workflow involves an application being launched by a person
(user) with a certain official position (role) in the bank. Generally
speaking, a role and a user (e.g., an employee) need to be assigned
to handle a task of a particular type in the workflow. The model
of assigning a role and a user to a HCT is illustrated in Fig. 1(a).
In this model, the Places Pr and Pu hold all tokens representing
the roles and the users, respectively. The Pt place holds the token
representing a task in the workflow. The transition Trt assigns
a role in the Pr place to a task in the Pt place, and deposits a
token to the Prt place, indicating the task-role assignment has
been established. When a token is deposited into the place Purt , it
means that a user has been assigned to the task. After the HCT has
completed authorization, it is sent to the computing resource pool
for execution (the execution of a HCT is modeled in Section 4.4).
Since the time spent by a user (human resource) to handle a HCT is
negligible, the user assigned to theHCT is free to handle other tasks.
Therefore, the user token is returned to the place Pu immediately
after Turt fires.

The model for conducting the role and user assignment for an
HT is shown in Fig. 1(b). A role is first assigned to the HT by the
transition Trt . Since an HT is processed by human resources, its
user assignment procedure and execution procedure are combined
together. After the HT completes the role assignment, it is
deposited by the transition Thtp into a Human Task Pool (the place
Phtp), where the HT waits to be allocated to a user. Note that
there is only one Phtp place in the system model, and all HTs that
have completed the role assignment will be put into the place.
The guard function of the transition Thex is used to enforce the
scheduling strategy, which will be discussed in Subsection IV.D.
After the HT finishes execution, the role and the user are returned
to their corresponding places and are free to be allocated to other
tasks. Moreover a token is deposited to the place (P ′

t in Fig. 1(b))
corresponding to the child task of task t .

We call the model of assigning a role and a user to a task a
role and user assignment module. A CPN model is formally defined
using Eq. (1). The remainder of this subsection is dedicated to
determining the attributes CS, CF, A andG (i.e., token colors, arc and
Guard functions) for the role and user assignment module in Fig. 1.
These attributes together enforce the temporal constraints and
role constraints. It is straightforward to determine the attributes
P, T, AR, V and I (i.e., the initial number of tokens in the places)
in the model. Therefore, they are omitted for brevity. After
determining these attributes, the role and user assignmentmodule
can be automatically assembled to construct the authorization
control module for the entire workflow, which will be shown in
Section 4.3.
(1) Token colors.
• A token in the Pr place, denoted as r , represents a role. The color

of the token r is defined as r = (rid,D), where rid is the role
identifier; D defines the temporal attribute of the role and it
is a set of durations in which the role is activated and can be
assigned to tasks. D can be expressed as in Eq. (2), where ℵ is
the set of natural numbers.

D = {[ldi, udi]|i ∈ ℵ}. (2)

• A token in the Pt place, denoted as t , represents a task. The
token color is defined as t = (tid, wid, iid, e), where tid is the
task identifier, wid is the identifier of the workflow that the
task belongs to, iid is the identifier of the workflow instance,
and e is the task’s execution time. A time stamp ts is attached
to the token t , denoted as t@ts. The time stamp represents the
earliest time atwhich the task can be processed. The time stamp
of the token t is set as the time when the token is deposited to
Place Pt .

L. He et al. / Future Generation Computer Systems 28 (2012) 1177–1193 1181
• The color of a token in the Prt place is defined as follows, which
is the combination of the color attributes of token t and r .

rt = (tid, wid, iid, e, rid,D)

• A token in place Pu represents a user, whose color is defined as
u = (uid, rid), where rid is the role that the user belongs to.

• The color of a token in the place Purt in Fig. 1(a) is defined as

urt = (uid, rid, tid, wid, iid, e,D).

• A token in Place Phex in Fig. 1(b) is the same as the token in
Place Prt .

(2) Arc functions.

• The arc function (APr, Trt) can be defined as ‘‘If gt ⊑ r . D then
r ’’, which is used to enforce the roles’ temporal constraints (gt is
the current global time of the system). This expression means a
role is allowed to be assigned to a task only when the value of
the global timer is within one of the role’s activation durations
(denoted by the symbol ‘‘⊑’’), i.e., the role is available. It is
assumed in this paper that the users have the same availability
period as their associated roles. But it is straightforward to
extend the model to allow individual users to have different
and more restricted availability (e.g., in the case of different
employees rotating to cover different shifts of the same official
position).

• Other arc functions in Fig. 1(a) are defined as A (Pt , Trt) = ‘‘t ’’,
A(Pu, Turt) = ‘‘u’’, A(Prt , Turt) = ‘‘rt ’’ and A(Turt , Purt) = ‘‘urt ’’. In
Fig. 1(b), A(Prt , Thtp) = ‘‘rt ’’, A(Thtp, Phtp) = ‘‘rt ’’, A(Phtp,Thex) =

‘‘rt ’’, A(Pu, Thex) = ‘‘u’’, A(Thex, Pr) = ‘‘r ’’, A(Thex, Pu) = ‘‘u’’.

(3) Guard functions.
The guard function associated to transition Trt , denoted as

(GTrt), is used to enforce role assignment restrictions. Three types
of restriction are modeled. The first one specifies that a role
is assigned to a task only when the task can run to comple-
tion within one of the role’s activation durations specified in
Eq. (2). This restriction is motivated by the fact that most existing
workflow description languages, such as BPMN [35], assume that
the execution of a task in a workflow is an atomic process. This re-
striction is formulated as

[gt, gt + t · e] ⊑ r · D. (3)

The second type of restriction is the role constraint which
specifies the set of roles that are allowed to run a task. This
restriction is expressed as

r · rid ∈ R(t), (4)

where R(t) denotes the set of roles which can run the task t .
The third type of restriction reflects the role hierarchy constraint.

The role hierarchy constraint ensures that in all available roles,
only the role with the least privilege is assigned to run a task.
Eqs. (3) and (4) can be used to determine which roles are available
to run a task. The available roles in R(ti) can be divided into the
disjoint sets, s1, s2, . . . , sh, based on the role hierarchy relation,
i.e., the roles having the hierarchy relation are classified into the
same set. Then the role hierarchy constraint can be formalized as
follows, where the operator min returns the role with the least
privilege in the set si.

r · rid ∈ {rj · rid|rj = min(si), 1 ≤ i ≤ h}. (5)

Note that the role hierarchy constraint is a special case of the
role constraint, since si in Eq. (5) is a subset of R(ti). This means
that if a task-role assignment satisfies the role hierarchy constraint,
it must also satisfy the role constraint. Therefore, (GTrt) can be
expressed as in Eq. (6).

[gt, gt + t · e] ⊑ r · D&&r · rid ∈ {rj · rid|

rj = min(si), 1 ≤ i ≤ h}. (6)

In Fig. 1(a), the guard function of Transition Turt , G(Turt),
guarantees that only the users which belong to the role assigned to
the task are eligible for the task-user assignment. U (rid) denotes
the set of users belonging to the role whose id is rid. G(Turt) can be
formalized as

G(Turt) = ‘‘u · uid ∈ U(rt · rid)’’. (7)

Since the user assignment and the task execution for HTs are
combined in the same module, the guard function of Transition
Thex, G(Thex), is used not only to conduct user assignment, but also
to enforce the scheduling strategy. The expression used to perform
the user assignment inG(Thex) is the same as Eq. (7). The expression
for enforcing the scheduling strategy is discussed in Section 4.4.

4.2. Binding of duty and separation of duty constraints

The duty constraints impose restrictions on the role or user
assignments of two tasks in a workflow. The paper only presents
the duty constraints for roles. The duty constraints for users can
be modeled in the similar fashion. Although Binding of Duty (BoD)
and Separation of Duty (SoD) represent opposite authorization
behaviors, these two types of duty constraints are modeled in a
uniform fashion in this paper so that they have the same model
structure. We call these the SoD module and the BoD module. The
differences between these are essentially in some arc and guard
functions, as well as the color set of some places. The benefit of
doing this is that the models for individual duty constraints can
be easily assembled to form the authorization model for the entire
workflow.

There are two types of relationship between two tasks in a
workflow in terms of precedence constraints (i.e., the order of
execution): sequential tasks and parallel tasks. Assume task ta and
tb. If tb ∈ Pred (ta) or tb ∈ Succ (ta) (Pred (ti) and Succ (ti) denote
the set of tasks which are task ti’s predecessors and successors,
respectively), then ta and tb are sequential tasks and have to be
run in the required order. If tb ∉ Pred (ta) and tb ∉ Succ (ta), ta
and tb can be executed in parallel. Duty constraints are modeled in
a different way for these two types of tasks. Their model structures
are shown in Fig. 2(a) and (b), respectively.
(1) Sequential tasks.

As shown in Fig. 2(a), the duty constraints module consists of
the role assignment modules for ta and tb (encompassed in two
round-cornered rectangles), connected by place Pseq. Pseq is one of
the output places of transition Trt (ta) and one of the input places
of transition Trt (tb). The attributes of the role assignment modules
have been discussed in Section 4.1. The attributes related to the
new place, Pseq, are as follows.

• Token colors: The color of a token in place Pseq is defined as
seq = (tid, wid, iid, rid), which carries the information ofwhich
role has been assigned to task tid.

• Arc functions: (ATrt(ta), Pseq) and A(Pseq, Trt(tb)) are both
defined as ‘‘seq’’.

• Guard functions: The guard functions associated to Trt (tb)
are different for SoD and BoD constraints. A SoD constraint
can be expressed as Eq. (8), while a BoD constraint can be
formulated as Eq. (9). t in Eqs. (8) and (9) is a token in place
Ptb. The condition seq.wid = t.widand seq.iid = t.iid is used to
guarantee that the same workflow instance is referred to, since
this model allows multiple instances of the same workflow to
be processed simultaneously. Different instances of a workflow

1182 L. He et al. / Future Generation Computer Systems 28 (2012) 1177–1193
(a) Sequential tasks. (b) Parallel tasks.

Fig. 2. Duty constraints modules.
will have different values of iid. The guard function G(Trt(tb))
can be formulated as Eqs. (6) and (8) for the SoD constraint, and
as Eqs. (6) and (9) for BoD.

seq · wid = t · wid&&seq · iid
= t · iid&&seq · rid ≠ r · rid (8)

seq · wid = t · wid&&seq · iid = t · iid&&seq · rid
= r · rid. (9)

(2) Parallel tasks.
Similar to Fig. 2(a), a new place, labeled Ppar , is used in Fig. 2(b)

to interface between the role and user assignment modules when
ta and tb are parallel tasks. In the remainder of this subsection we
first determine the attributes related to Place Ppar , and then use an
example to illustrate the workings of the module.

• Token colors: There are two types of tokens in Ppar : par_initand
par. par_initis defined as par_init = (tida, tidb, wid, iid, flag),
while par is defined as par = (tid, rid, wid, iid, flag), where the
fifth parameter flag is used to differentiate the tokens par_init
and par. The value of flag is set to be zero for par_init while
its value be 1 for par. In doing so, the model can differentiate
par_init and par by checking the value of flag.

• Guard functions: If it is a SoD constraint, the guard function of
the transition Trt (ta) (or Trt(tb)) is formulated as Eqs. (6) and
(10). If it is a BoD constraint, it is expressed as Eqs. (6) and (11).

((t · tid = par_init · tida ∥ t · tid = par_init · tidb)&&
t · wid = par_init · wid&&par_init · iid = t · iid) ∥

(t · wid = par · wid&&par · iid = t · iid&&
r · rid ≠ par · rid) (10)

((t · tid = par_init · tida ∥ t · tid = par_init · tid)&&
t · wid = par_init · wid&&par_init · iid = t · iid) ∥

(t · wid = par · wid&&par · iid = t · iid&&
r · rid = par · rid). (11)

• Arc functions: A(Ppar , Trt) and A(Trt , Ppar) are defined in
Eqs. (12) and (13), respectively.

A(P_par, T_rt) = par_init ∥ par (12)
A(T_rt, P_par) = ‘‘if par_init then par ’’. (13)

(3) Workings of the duty constraint modules.
The workings of the duty constraint modules and the above

expressions are illustrated as follows. When performing the role
assignment for a task (e.g., ta), the model will check whether
the other task (e.g., tb) has been assigned a role. Assume there
is a BoD constraint between ta and tb, then the place Ppar will
contain a par_inittoken in the model’s initial marking. When the
Trt transition performs the role assignment for ta, it will evaluate
which token in Ppar can satisfy Eq. (10), and therefore can be fired
by the transition. There are two possibilities:
(a) If there is a corresponding par_inittoken in Ppar , which means
that tb has not been assigned a role, then the first part of Eq. (10)
(i.e., the portion before the second ‘‘∥’’) will be evaluated as true.
Consequently, the Trt (ta) transition will remove the par_inittoken
from Ppar and deposit a par token back to Ppar as shown in Eq. (13).
(b) If there is a par token in Ppar , this means that tb has been
assigned to a role. Further, if there is a role in place Pr whose
identifier (i.e., r.rid) is the same as the role assigned to tb
(i.e., par.rid), the second part of Eq. (10) will be evaluated as true.
Thus, the BoD constraint is enforced.

4.3. Assembling authorization modules

One of the advantages of the modeling mechanism developed
in this paper is that the authorization model can be constructed
automatically by assembling a set of interacting hierarchical
modules. There are clear interfaces and hierarchy structure among
the modules. As shown in Fig. 2, the duty constraints module
consists of the role modules for ta and tb, interfacing via place Ppar
or Pseq. Generally, the assembly procedure is as follows.

Definition 1. Mk = (Pk, Tk, ARk, CSk, Vk, CFk,Gk, Ak, Ik) is the role
and user assignment module for task tk.

Definition 2. M = (P, T , AR, CS, V , CF ,G, A, I) is a module
in which j tasks, ti1, ti2, . . . , tij, have the duty constraints with
task tk.

Definition 3. M ′
= (P ′, T ′, AR′, CS ′, V ′, CF ′,G′, A′, I ′) is the

module that captures the duty constraints between the j tasks in
module M and task tk in moduleMk.

Then, the module M ′ in Definition 3 can be constructed by
assemblingM and Mk as shown in Theorem 1.

Theorem 1. GivenMk, M, andM ′ in Definitions 1–3, the attributes of
M ′ can be computed as follows.

•

P ′
= P ∪ Pk ∪

tik∈Pred(tk)∪Succ(tk)

Pseq(tik , tk)

∪

tik ∉Pred(tk)

Ppar(tik , tk)

 . (14)

L. He et al. / Future Generation Computer Systems 28 (2012) 1177–1193 1183
•

T ′
= T ∪ Tk (15)

•

CS ′
= CS ∪ CSk ∪ seq ∪ {par, par_init} (16)

•

CF ′
= CF ∪ CFk ∪ CF(Pseq) ∪ CF(Ppar). (17)

• A′ can be computed using Eq. (18), where Pseq(tx, ty) or Ppar(tx, ty)
denotes the Pseq or Ppar place that is added to model the duty
constraints between tx and ty.

• AR′ and G′ can be computed using Algorithm 1, where g seq
SoD, g

seq
BoD,

gpar
SoD and gpar

BoD are the guard expressions specified in Eqs. (8)–(11),
respectively.

Proof. (1) For each task in the module M that has the duty
constraint with task tk, a new place (either Pseq or Ppar depending
on whether they have the precedence constraint) is added in the
new module M ′. So P ′ can be computed as in Eq. (14). (2) There is
no need to add new transitions in M ′. So T ′ can be computed as
Eq. (15). (3) The new color set of M ′ is the union of the color sets
of Mk and M plus the colors of the tokens in Place Pseq and Ppar . So
CS ′ can be computed as Eq. (16). Similarly, CF ′ can be computed
using Eq. (17). (4) The arc function set inM ′ is the union of the arc
function sets of Mk and M plus the arcs added between place Pseq
or Ppar and the corresponding Trt transitions, as shown in Fig. 2.
So A′ can be computed using Eq. (18). (5) Since there are no new
transitions added in M ′, Step 1 to 3 in Algorithm 1 first initializes
AR′ to be the union of ARand ARk, and G′ be the union of G and
Gk. Then, in the for-loop, the algorithm adjusts the input, output
and guard functions of the individual transitions that have the arc
connections with the newly added Pseq and Ppar places. �

The importance of Theorem 1 is that with the formalized equa-
tions and algorithm, the process of constructing the authorization
control model can be automated rather than being built manually,
which can greatly speedup the modeling process.

We use a case study to illustrate how to assemble the individual
role assignment modules subject to the duty constraints. The
exemplar workflow is abstracted from a business process in a
bank [36]. The roles which are involved in the process are listed in
Table 1. Theworkflow consists of 7 tasks, whose topology is shown
in Fig. 3(a). It is assumed that task t1 is an automated computing
task and does not need the role and user assignment. The tasks and
the role assignment constraints are shown in Table 2.

Assume that the followingBoDand SoD constraints are imposed
on the tasks, where r(ti) denotes the role assigned to task ti.

C1 : r(t2) = r(t4); C2 : r(t2) ≠ r(t5);
C3 : r(t2) ≠ r(t7);
C4 : r(t6) ≠ r(t7); C5 : r(t3) = r(t5).

These duty constraints can be represented as a duty constraints
graph shown in Fig. 3(b). In the duty constraints graph, if there
are duty constraints between two sequential tasks, a single-headed
arrow is used to connect the predecessor to the successor. If there
exist duty constraints between two parallel tasks, the two tasks
are connected by a double-headed arrow. Applying the module
assembly operations described in Eqs. (14)–(18) and Algorithm 1,
the hierarchy of the authorization control model for the entire
workflow can be constructed as shown in Fig. 4, whereMurti (i.e., a
round-cornered rectangle) is a role and user assignment module
for task ti if ti is an HCT, or is a role assignment module if ti is an
HT. Note that there should be a directed arc from the Pr place and
the Pu place to every module as shown in Fig. 2, these are omitted
for clarity.
Table 1
Role descriptions in the loan lending workflow.

Role Description Role Description

SM Second market official BM Bank manager
FA Financial advisor CL Bank clerk
LB Loan broker UW Underwriter

Table 2
Task descriptions and role constraints in the workflow.

Task Description Role constraints

t1 Updating products and rates None
t2 Product and rate decision engine FA/LB/BM
t3 Collecting data FA/LB/CL
t4 Analyzing data of third-party 1 FA/LB/CL
t5 Analyzing data of third-party 2 FA/LB/CL
t6 Analyzing business rules FA/BM
T7 Underwriting UW/BM

Algorithm 1. Calculating AR′ and G′ fromM and Mk.

A′
= A ∪ Ak ∪

tis∈Pred(tk)

A(Trt(tis), Pseq(tis , tk))

∪

tis∈Succ(tk)

A(Pseq(tis , tk), Trt(tis))

∪

tis∉Pred(tk)∪Succ(tk)

(A(Ppar(tis , tk), Trt(tis))

∪ A(Ppar(tis , tk), Trt(tk))

∪ A(Trt(tis), Ppar(tis , tk)) ∪ A(Trt(tk), Ppar(tis , tk))). (18)

1184 L. He et al. / Future Generation Computer Systems 28 (2012) 1177–1193
(a) An exemplar
workflow.

(b) Duty constraints graph.

Fig. 3. An exemplar workflow and its duty constraints graph.
Fig. 4. Hierarchy of the authorization control module for the workflow in Fig. 3(a).

In this work we model the fact that the tokens in Pr and Pu
are shared by all tasks. This is reasonable because the roles and
users are the global parameters and should be applied to all tasks
in the system. Cardinality constraints, which specify the maximum
number of tasks that can be handled at the same time by a role, can
be modeled by the number of tokens representing the role in Pr .

Since the users are human resources and a user can only
process one task at a time, in the Pu place the number of the
token corresponding to a user is one. Note that when authorizing
the HCTs in Fig. 1(a), the user token is returned to the Pu place
immediately after the authorization is completed (we assume that
the time spent by a user to handle a HCT is negligible). Therefore,
there may be multiple tasks running under a user in the system.
This paper does not assume the explicit cardinality constraint for
users. The cardinality constraint of the users is implicitly reflected
by that of the role that the users are affiliated with.

4.4. Modeling workflow execution under authorization

This subsection first presents the modules for executing a HCT,
an HT and an ACT, which are shown in Fig. 5(a)–(c), respectively,
and then discusses the model for executing a workflow under the
authorization control aswell as the interactions betweenworkflow
authorization and workflow execution.

4.4.1. HCT and ACT executions under authorization
Fig. 5(a) shows the execution of a HCT. A HCT requires the role

and user assignment, so it is necessary to go through the role and
user assignment module as shown in Fig. 1(a); this is abstracted
here by a round-cornered rectangle with Pt , Pr and Pu as the input
places of the module and Purt as the output place. The place Pctp is
a computing ask pool, which is used to hold all computing tasks
(i.e., ACTs and HCTs). After the task is assigned a role and a user
(i.e., a token is deposited into the Purt place), it is put into the Pctp
place. The token in Place Pctp is the same as that in Purt . Note that
there is only one Pctp place in the model, which is used to hold all
HCTs and ACTs ready for execution.
Fig. 5. Task execution module under authorization control (a) for human-aided
computing task (HCT); (b) for human task (HT); (c) executionmodule for automated
computing task (ACT).

The place Prp in the figure represents the computing resource
pool. In place Prp, a token represents a computing resource, and the
number of the tokens represents the number of resources currently
available in the pool. A token in the Prp place is defined as rp = nid.

The Tcex transition controls task scheduling and resource
allocation, and also represents task execution.

The scheduling of computing tasks is controlled by the guard
functions of the transition Tcex (i.e., G(Tcex)), respectively. If a First-
Come-First-Served (FCFS) policy is used to schedule the tasks,
G(Tcex) can be defined as Eq. (19), where τ denotes a token in the
Pctp place, i.e., urt. The expression uses the tokens’ time stamps to
determine which token first arrives at the Pctp place.

τ ∈ {τ |τ@ts = min{τ@ts}}. (19)

During the resource allocation, assume an authorized task is
randomly allocated to any of the free computing resources in the
pool. Resource allocation and task execution are modeled in the
following way. If there are tokens in the Prp place (i.e., there are
free computing resources) and there is at least a token in Pctp, the
Tcex transition fires immediately (which indicates the start of the
task’s execution and which task starts execution is controlled by
Eq. (19)).

According to the workflow topology, only when a task is
completed, can the task’s children start execution. Assuming wk. ti
is the currently running task inworkflowwk and Children (wk.ti) =

{tj1, tj2, . . . tjq} denotes the set of tasks which are ti’s children in
workflowwk. Then when Tcex fires, the token t = (tidjk, wid, iid, e)
is deposited into the place corresponding to task tjk, i.e., Place Ptjk.
The time stamp of the deposited token t will be set as the current
global time plus ti’s execution time, that is, t@ts = gt + ti.e.
Therefore, task tjk is not ready for authorization and execution until
task ti is completed.

The arc function A(Tcex, Ptjk) is used to control which places a
token should be deposited into. A(Tcex, Ptjk) can be defined as

A(Tcex, Ptjk) = ‘‘if tjk ∈ Children(wk.ti), then tjk’’. (20)

L. He et al. / Future Generation Computer Systems 28 (2012) 1177–1193 1185
Fig. 6. Modeling workflow execution under authorization control; only the Petri-
net components for task t1 are labeled, and the labels for other tasks are omitted for
the sake of clarity); the place Prp represents the node pool and the individual Prp
places should be regarded as a single Prp place.

Moreover, after a task is completed, the role assigned to the task
needs to be returned to place Pr (the user token has been returned
to the Pu place after Turt fires as shown in Fig. 1(a)), so that the role
can be assigned to other tasks and its cardinality constraint can be
applied. This procedure is modeled as follows. When Tcex fires, an r
token is deposited back to the Pr place. The time stamp of the token
is set as gt + t · e. Similarly, when Tcex fires, an rptoken is deposited
back to the Prp place (expressed as double-headed arrows). rp@tsis
also set as gt + t · e, which means although the rp token is back to
the Prp place, the corresponding resource can only be allocated to
other tasks when the simulated execution of the current task has
been completed.

Fig. 5(c) shows the execution module for an Automated
Computing Task (ACT). An ACT does not need the role and user
assignment. Therefore, it is put into the Pctp place immediately.
Afterward, it is handled in the similar way as the HCTs. Namely,
when there are tokens in Prp, the ACT can start execution. After
the task is completed, the new tokens are deposited into the places
corresponding to the task’s children.

4.4.2. HT execution under authorization
Fig. 5(b) shows the HT execution under the authorization

control. After an HT is assigned a role, it is put into a Human Task
Pool, Place Phtp, where it waits for user assignment and execution.
The guard function G(Thex) enforces the scheduling strategy and
user assignment. If the FCFS scheduling is applied, the expression
for enforcing the scheduling strategy is defined in Eq. (19). The
only difference is that τ is now an rt , instead of an urt. Therefore,
combined with the expression for performing the user assignment
shown in (7), G(Thex) can be defined as (21), where τ is the rt token.

G(Thex) = u · uid ∈ U(rt · rid)&&
τ ∈ {τ |τ@ts = min{τ@ts}}. (21)

The arc function A(Thex, Ptjk) is the same as Eq. (20).
When Thex fires, a u token is deposited back to the Pu place and

the time stamp of the u token is set as gt + t · e, which means that
the user is not available to handle other tasks until the current task
is completed.

4.4.3. Workflow execution under authorization
Fig. 6 models the execution of the workflow in Fig. 3(a) under

authorization control. Assume that task t1 is an ACT, t3 and t7 are
the HTs and the remaining tasks are the HCTs. Similar as in Fig. 4,
the role and user assignment module for task ti is represented as
a round-cornered rectangle (labeled as Murti). The role and user
assignment module of HCTs has an input place Pti and an output
place Purti, while the module for HTs has an input place Pti and an
output place Prti. Note that in this figure, there is only one Pctp place,
Fig. 7. Authorization and executions ofmultipleworkflows (submitted by different
clients); WAEMi is the workflow authorization and executionmodule for workflow
wi .

which holds all authorized computing tasks, and one Phtp place,
which holds all human tasks.

The workings in the model are explained as follows. Since t1
is an ACT, it does not need authorization and it is sent to the Pctp
place immediately. After t1 is run (i.e., the transition Tcex fires), a
token is deposited into the place t2 and t3, according to the arc
function A(Tcex, Pti) (2 ≤ i ≤ 7), defined in Eq. (20). This starts
the authorization process for t2 and t3. After t2’s authorization is
completed, an urt token is deposited into the places Purt2, and
the urt token is further deposited into the place Pctp, where the
authorized t2 waits to be allocated a computing resource and then
to be executed. T3 is an HT. After a role is assigned to t3, it is
put into the Phtp place, where it waits to be scheduled to a user
for execution. The scheduling strategy is enforced by Eq. (21).
The authorization and execution of task t4 − t7 follow the same
procedure.

It can be seen from Fig. 6 that there is a clear interface between
the workflow authorization module and the task execution
module. The Pti places are the input interface of the workflow
authorization module and the output interface of task executions,
while the Pctp and Phtp places are the output interface of the
workflow authorization module and the input interface of the task
executions.

Hierarchical Colored Petri Nets are defined in [21], in which
a Petri Net model can have arbitrary number of abstraction
levels. Each abstraction level contains the places, transitions and
substitution transitions. A substitution transition is mapped to a
module. The detailed structure of a module can be established
in the lower abstraction levels [21]. Note that although the term
‘‘module’’ is introduced in this paper, for example, ‘‘role and user
assignment module’’, ‘‘workflow authorization module’’, etc., the
modules are introduced only for the purpose of understanding the
conceptual hierarchy of the constructed model. These modules do
not precisely comply with the concept of module and substitution
transition defined in [21]. Therefore, the entire model constructed
in this paper is a non-hierarchical model.

We found that it is difficult to use the Hierarchical Colored
Petri Nets defined in [21] to model the workflow authorization
and execution system in this paper. The reason is explained as
follows. In the Hierarchical Colored Petri Nets defined in [21], a
module should have input and output ports, and the modules
are tied together through their input and output ports to form
the higher level module. In the workflow authorization module
in this paper, however, the role and user assignment module are
combined together by adding new places (Pseq or Ppar) to form the
workflow authorization system. Moreover, the net structure of the
workflow authorization system varies with theworkflow topology
and the BoD and SoD constraints present among the tasks in the
workflow.

Ifmultipleworkflows are running in the system (eachworkflow
can have many instances), an authorization and execution module
shown in Fig. 6 needs to be constructed for each workflow. Fig. 7
shows the model structure for authorizing and executing two
workflows. In the figure,WAEM1 andWAEM2 are the authorization
and execution modules for workflow w1 and w2, respectively. As
can be seen from the figure, the different workflow authorization
and execution modules only share Place PRP , Pr , Pu, Phtp and Pctp.

1186 L. He et al. / Future Generation Computer Systems 28 (2012) 1177–1193
5. Model simulation and analysis

The modeling mechanism presented in this paper has been
implemented using the CPN Tools [22]. The CPN Tools is a software
platform that is able to construct and simulate the Petri-net
models. This toolkit provides a flexible mechanism that allows
users to monitor a set of tokens, places and/or transitions, and
their runtime status can be automatically collected during model
simulations. This functionality of the toolkit is utilized in this paper
to analyze and evaluate a constructed Petri-net model in terms of
authorization overhead and various performance metrics.

5.1. Analyzing overhead caused by authorization

Analyzing authorization overhead in a constructed model
can give us insight as to which authorization requirements are
causing performance degradation under the current authorization
deployment. The authorization overhead can be represented by
the time a task has to wait for accomplishing the role and
user assignment. In this paper, it is assumed that the roles and
their associated users have the same temporal constraints, and
that there are no separate cardinality constraints applied to the
users. Consequently, once the task-role assignment is completed,
there should be no further waiting for the task-user assignment
for HCTs. For HTs, if a task has to wait for users, the waiting
is caused by resource competition (i.e., all required users are
busy for processing other HTs), and should not be regarded the
authorization overhead. Therefore, a task’s authorization overhead
is equal to the time for assigning roles. It is easy to extend this
work to incorporate separate temporal constraints and cardinality
constraints for users.

5.1.1. Overhead by cardinality and temporal constraints
Fig. 1 shows the role and user assignment module, which is

the building block of the authorization module for the entire
workflow. During themodel simulations, the CPN Tools can extract
the time stamp of a token in Place Pt (i.e., the arrival time of the
corresponding task) and the time stampof a token in Place Prt when
the task has been assigned a role. The difference between these two
time stamps is the time the task has towait for the role assignment.

w(tj) denotes the waiting time for accomplishing the role
assignment for task tj. The waiting is caused by either cardinality
constraint or temporal constraint. w(tj) can be calculated as,

w(tj) = rt j@ts − tj@ts. (22)
w(tj, ri) denotes the authorization waiting time if role ri (ri ∈

R(tj)) is assigned to task tj. If ri is activated, w(tj, ri) represents
the authorization overhead caused by ri’s cardinality constraint to
tj (which we term as ri’s cardinality overhead on tj). In this case,
w(tj, ri) can be calculated using Eq. (23), where rei denotes the
instance of ri that has the earliest timestamp when the token is
deposited into Place Pti; rei @ts and tj@ts denote the time stamp of
role instance rei and that of task tj, respectively. The setting of a role
instance’s time stamp is discussed in the second last paragraph of
Section 4.4.1.
w(tj, ri) = max(rei @ts − tj@ts, 0). (23)

If ri is not activated, then w(tj, ri) represents the overhead
caused by ri’s temporal constraint. In this case, w(tj, ri) can be
calculated using Eq. (24), where lde(ri) is the earliest time when
ri becomes activated. lde(ri) can be determined by D (the activated
durations of ri) defined in Eq. (2).

w(tj, ri) =

0 [gt, gt + tj · e] ⊆ ri · D
lde(ri) − TS(tj) otherwise. (24)

Using Eqs. (23) and (24), we can calculate every task’s autho-
rization overhead caused by every role’s cardinality constraint and
temporal constraint. Note that the following relation holds.
w(tj) = min{w(tj, ri) | ri ∈ R(tj)}.
5.1.2. Overhead by role, duty and hierarchy constraints
Role constraints, role hierarchy constraints andduty constraints

have the similar impact, i.e., limiting the range of roles eligible for
role assignment.

The overhead caused by these three constraints to task tj is
represented in the following way. We first calculate the waiting
time for accomplishing the role assignment for tj (i.e., w(tj)),
then calculate tj’s authorization waiting time disregarding the
constraint. The difference between these two authorization
waiting times is deemed the overhead caused by the constraint
to task ti. The average of the overhead over all tasks is regarded
as the overhead of the constraint. The following discusses how to
disregard these constraints in the model.
(i) Disregarding role constraints.

The role constraints are reflected in Eq. (6) (note that the
role constraint is modeled as a special case of the role hierarchy
constraint). When the role constraint for task ti is disregarded,
the entire role set has to be examined when enforcing the role
hierarchy constraint (not just considering the roles in R(ti)).
Assume all roles in the system can be classified into Q disjoint sets,
H1, H2, . . . ,HQ , based on the role hierarchy relation. H(ri) denotes
the hierarchy set that role ri is in. Then Eq. (6) should be rewritten
as Eq. (25).

G(Trti) = [gt, gt + t · e] ⊑ r · D&&
r · rid ∈ {rj · rid|rj = min(Hi), 1 ≤ i ≤ Q }. (25)

(ii) Disregarding duty constraints.
The SoD constraint is captured by adding the Pseq place (for

sequential tasks) or the Ppar place (for parallel tasks) as well as the
corresponding arcs.When the duty constraints are disregarded, the
corresponding place and arcs are deleted. The corresponding guard
functions shown in Eqs. (8)–(11) are also removed.
(iii) Disregarding role hierarchy constraints.

When disregarding the role hierarchy constraint for task ti,
Eq. (6) should be changed to Eq. (26). In the equation, the term for
enforcing the role hierarchy constraint is removed. However, the
expression for enforcing the role constraint is omitted in Eq. (6)
only because the role hierarchy constraint is treated as a special
case of the role constraint. Since the term for the role hierarchy
constraint is now removed, the term for the role constraint should
be added.

G(Trti) = r · rid ∈ R(ti)&&[gt, gt + t · e] ⊑ r · D. (26)

5.2. Calculating other performance metrics

The CPN Tools can evaluate the overall performance of a
constructed Petri-net model in terms of various metrics. For
example, resource utilization can be evaluated by monitoring the
number of tokens in the place corresponding to the resource pool
(which is Prp or Pu in the model). Assume the initial marking of the
place Prp is n, and during model simulations the average number
of tokens in the place observed by the CPN Tools is avg_n, then the
Utilization of Computing Resources (UCR), can be calculated as:

UCR = 1 − avg_n/n.

The Utilization of Human Resources, denoted as UHR, can be
calculated in the similar way.

It is also straightforward to determine the response time of a
workflow using the CPN Tools. The tool can extract the time stamp
when a workflow arrives at the system, and the time stamp when
the last task in the workflow is completed. The difference between
these two time stamps is the response time of the workflow. Based
on the information,we can easily calculate themean response time
of all workflows. Other performance metrics that the CPN Tools is
able to evaluate include throughput, deadline miss rate, etc.

L. He et al. / Future Generation Computer Systems 28 (2012) 1177–1193 1187
5.3. Improving performance under the authorization control

Generally speaking, there are two possible approaches to im-
proving performance in the presence of authorization policies. On
the one hand, the company can relax the authorization constraints
which are causing the significant overhead. For example, the com-
pany can allow the users to share an additional common role and
allow this role to be always activated. On the other hand, the com-
pany can change the system deployment which is not directly re-
lated to the authorization control, such as the scheduling strategy,
and the quantity of resources.

The first approach is not always feasible since the presence
of the authorization constraints may be mandatory for security
reasons. However, if some authorization constraints are allowed
to be relaxed in certain circumstances, we can apply the methods
presented in Section 5.1 to calculate the authorization overhead
caused by each authorization constraint, and therefore determine
which authorization constraints are significantly hampering the
performance. Which authorization constraints can be relaxed
mainly depends on the nature of the businesses being processed
and the company policy, which are out of the scope of this paper.

In this paper, we focus on the second approach, i.e., improving
the performance by (1) adjusting the scheduling strategy, and
(2) changing the quantity of human and computing resources.

5.3.1. Improving performance by changing the scheduling strategy
The scheduling strategy can have impact on the cardinality

overhead. When the number of the tasks running under a role has
reached the number set by the cardinality constraint, the new task
requiring that role has towait until one of those tasks is completed.
The waiting time is regarded as the cardinality overhead. A good
scheduling strategy could reduce the tasks’ waiting time caused
by the cardinality constraints and therefore improve performance.
The First-Come-First-Served scheduling strategy is employed in
the model presented in Section 4. In the rest of this Subsection, a
new scheduling strategy is proposed to enhance the performance
by reducing the cardinality overhead.

Assume that ri’s cardinality constraint is ci. In order to eliminate
ri’s cardinality overhead, the number of the tasks running under
role ri should be less than ci when a new task arrives requesting
role ri. γi denotes the arrival rate of the tasks assigned to role ri,
and RT i denotes the mean response time of the tasks assuming ri.
γi can be obtained from the simulation of the authorization model.
RT i can be determined as follows. According to Little’s Law in the
Queuing theory [37], we have ci = γi × RT i. Therefore, in order
to eliminate ri’s cardinality overhead, RT i should be less than ci/γi,
which is regarded as the desired average response time of the tasks
assigned to ri.

The proposed new scheduling strategy is essentially an EDF
(Earliest Deadline First) scheduler. AssumeN types ofworkfloware
modeled in the system. WF i denotes workflow i, tij denotes task tj
inWF i and eij denotes tij’s execution time. The instances ofWF i are
initiated following the Poisson processwith the initiation rate ofλi.
During the model simulations, we obtain the following statistical
information.

1: Obtaining which tasks assume role ri during the model
simulation.

2: Calculating the average execution time of the tasks running
under ri.

3: Calculating the ratio of the desired average response time (i.e.,
ci/γi) to the average execution time of the tasks assigned to ri. The
ratio is denoted as ηi. We assume that the system is in a steady
state. So ηi should be greater than 1.
In a new model simulation, when task tjk in WF k is assigned to
role ri, a soft deadline is attached to tjk, denoted as djk. djk is set as

djk = rt jk@ts + eij × ηi, (27)

where rt jk@ts is the timestamp of the token rt for task tjk, which is
the time when the token rt is deposited into the place Prt .

In the proposed EDF scheduling, the taskwith the smallest value
of dij − gt is always first put into execution (gt is the current global
time of the model). By doing so, the tasks which are more likely to
cause the cardinality overhead will be put into execution first. The
effectiveness of the EDF scheduling is demonstrated in Section 6.

If the EDF scheduling is applied, the term for enforcing the
scheduling strategy in G(Tcex) (defined in Eq. (19)) and G(Thex) (in
Eq. (21)) should be rewritten as Eq. (28), where τ .d is the deadline
of the token τ (specified in Eq. (27)).

τ ∈ {τ | τ · d = min{τ · d}}. (28)

5.3.2. Improving performance by adjusting resources
The time that a task waits for computing resources can be

calculated as the duration between the time when a token is
deposited into the Purt place and the time when the Tcex transition
fires. From the model simulations, we can calculate the average
resource waiting time of computing tasks (including HCTs and
ACTs), which is denoted as wCT .

The time for an HT to wait for human resources can be
calculated as the duration between the timewhen a role is assigned
to theHT and the timewhen a user starts processing theHT. During
the model simulations, we can calculate the average resource
waiting time of the HTs assuming the same role, ri, which is
denoted as wHT

i , as well as the average resource waiting time of
all HTs, denoted as wHT .

The tasks’ resource waiting time can be regarded as the
overhead caused by the resource contention. The HTs can only be
processed by the users associatedwith eligible roles. The roleswith
high resource waiting times are the bottleneck roles that present
higher overhead, and therefore may jeopardize the performance.
Given two roles, ri and rj (i ≠ j), if wHT

i is greater than wHT
j , it

indicates that the human resources provisioned for role ri are not
as adequate as those for rj under the current authorization settings.
Similarly, by comparing wHT and wCT , we can know whether the
system provides the balanced human resources and computing
resources, given the current authorization constraints.

When planning the resource capacity for a system, it is desired
to achieve the balanced performance in terms of wHT

i (1 ≤ i ≤

R, R is the number of roles) and also in terms of wHT and wCT .
The following method is proposed to approximate the amount of
human and computing resources so that the balanced resource
waiting time can be achieved.

From the model simulations, we can gather the arrival rate of
theHTs assuming role ri, denoted asλHT

i , and the average execution
time of the HTs that assume ri, denoted as ei. Assume that we aim
to configure the system capacity so that wHT

i (1 ≤ i ≤ R) and wCT

have the values close tow. According to the Queuing theory [37],w
satisfies Eq. (29), where ni is the number of homogeneous human
resources (i.e., the users) associated with role ri. Eq. (29) can be
transformed to Eq. (30) to calculate ni.

w =
λHT
i e2i

ni(ni − eiλHT
i)

(29)

ni =

λHT
i e2i

λHT
i

4
+

1
w

+

λHT
i ei
2

. (30)

1188 L. He et al. / Future Generation Computer Systems 28 (2012) 1177–1193
This paper assumes that a usermay be associatedwithmultiple
roles. Out of all HTs assigned to ui, χij denotes the proportion
of the tasks that assume ri. Again, χij can be obtained from the
model simulations. The number of human resources provided
for ri is regarded as

|U(ri)|
j=1 χij, where |U(ri)| is the number of

users associated with ri; χij is 1 if uj is only associated with ri.
In order to reduce the resource waiting time from wHT

i to w, the
additional number of human resources that should be provided can
be calculated as ni −

Ui
j=1 χij. If the result is not an integer, it is

rounded to the closest integer.
Similarly,we canhave the following equation for the computing

tasks, where λCT is the rate at which the computing tasks arrive
for computing resources, ect is the average execution time of
computing tasks, nct is the number of computing resources.

w =
λCT e2ct

nct(nct − ectλCT)
. (31)

With Eq. (31), we can calculate nct such that the average
resource waiting time of the computing tasks is w. Assume N
is the current number of computing resources. Then nct − N is
the additional number of computing resources that should be
equipped in order to achieve the desired performance of w.

After calculating the new resource parameters, we can then
adjust the resource quantity in the models and re-run the model
simulation to verify the performance achieved by the new system
capacity under the authorization settings.

Although we consider homogeneous human resources in this
paper, it is easy to extend the calculations to the heterogeneous
case.

6. Experimental studies

This section presents the simulation experiments to demon-
strate the impact of the authorization constraints on the per-
formance in terms of mean Response Time (RT) of workflows,
Utilization of Computing Resources (UCR) and Utilization of Hu-
man Resources (UHR). The performance in terms of deadline miss
rate and throughput is correlated with response time and utiliza-
tion, respectively.

In the simulations presented in this paper, the workflows
are randomly generated, each workflow containing TNUM tasks
and each task in a workflow having the maximum of MAX_DG
children. A workflow contains three types of task, HT, HCT and
ACT, following a certain ratio of the number of tasks in each type
(denoted as |HT| : |HCT| : |ACT|). RNUM roles and UNUM users are
assumed to be involved in processing the workflows.

The role constraints (i.e., the set of roles that a task can assume)
for eachHT andHCT are set in the following fashion. The simulation
sets a maximum number of roles that any task can assume in the
role constraints, denoted asMAX_RCST, which represents the level
of restrictions imposed on the role assignment for tasks. When
setting the role constraint for task ti, the number of roles that
can run ti is randomly selected from [1, MAX_RCST], and then that
number of roles are randomly selected from the role set. A similar
scheme is used to associate users to roles. The maximum number
of users a role can be associated to is denoted as MAX_U2R. The
number of users belonging to role ri is randomly selected from [1,
MAX_U2R]; and these users are then randomly selected for ri from
the user set.

NUM_SoD and NUM_BoD denote the number of tasks that
are associated with SoD and BoD constraints, respectively. Duty
constraints were set as follows. Each time, two tasks are randomly
selected from the workflow to establish the BoD constraint
between them until NUM_BoD tasks are covered. And then the
same procedure is applied to establish the SoD constraints among
tasks. In this process, the method presented in [29] is used to
guarantee that the designated duty constraints on these selected
tasks can be satisfied. We assume that the arrival of workflow
instances follows the Poisson process and that the tasks’ execution
times followan exponential distribution. Thehuman tasks have the
average execution time of EX_Htime units, while the computing
tasks, including HCT and ACT, have the average execution time of
EX_Cunits. There are NRhomogeneous computing resources.

CARD denotes the cardinality constraint, i.e., the maximum
number of the tasks that can be run simultaneously in the system
by a role. The temporal constraints on roles are set in the following
way. For each role, a time duration is selected from a period of
TD time units. The selected time duration occupies the specified
percentage of the TD time units, which is denoted as TEMP. The
starting time of the selected duration is chosen randomly from the
range of [0, TD × (1 − TEMP)]. For example, if TD = 200 and
TEMP = 70%, the starting point is randomly selected from 00% to
30% × 200.

The role hierarchy is set as follows. The RNUM roles are
randomly divided into H hierarchy sets. The number of roles in
each of the first (RNUM − 1) sets is ⌊RNUM/H⌋, and in the last set
the number of roles is RNUM − ⌊RNUM/H⌋ × (RNUM − 1). Then
in each set, the roles are randomly selected. The sequence of the
roles being selected is used to determine the role hierarchy. The
role being selected first has the lowest privilege.

6.1. Impact of cardinality and temporal constraints

Fig. 8 shows the RT and the RU of running the workflows
under authorization constraints as the arrival rate of theworkflows
increases. Fig. 8 also shows the impact caused by changing the
cardinality and the temporal constraints. Fig. 8(a) shows the
performance in terms of RT, while Fig. 8(b) and (c) show the
performance in terms of UCR and UHR, respectively. In order to
obtain the baseline performance for comparison, we simulated
the workflow scheduling and execution process assuming there is
no any authorization policy, that is, the ready HTs (or HCTs and
ACTs) are scheduled to run on any of the idle users (or computing
resources) on a FCFS basis. The recorded performance data is also
presented in Fig. 8 (the ‘‘no auth’’ curve).

By comparing the ‘‘no auth’’ curve and the ‘‘card = 9, temp =

70%’’ curve in Fig. 8(a), it can be seen that when the authorization
constraints are imposed, RT increases. This is because when
applying the authorization constraints, the tasks have to wait not
only for resources, but also for the assignment of roles, which
may not be available due to temporal constraints or cardinality
constraints.

When the cardinality constraint varies from 9 to 4, the
performance becomes even worse, which is to be expected.
A closer observation shows that when the arrival rate of the
workflows is low (no more than 3 × 10−2), the change in the
cardinality constraint does not have obvious impact on the RT,
while the RT increases dramatically as the arrival rate becomes
higher. This is because when the arrival rate is low, the number of
tasks trying to run simultaneously in the system is small. Therefore,
reducing the cardinality number from 9 to 4 may not affect the
performance. However, when the arrival rate is high, the small
cardinality number may form a performance bottleneck in the
system, and the incoming tasks may have to wait a long time for
role assignment since all role instances are assigned to the existing
tasks in the system.

It can also be observed from Fig. 8(a) that compared with
the impact of changing the cardinality constraints, the impact of
changing the roles’ temporal availability is different. When the
temporal constraint varies from 70% to 40%, the RT has noticeable
increases even when the arrival rate is low. This may be because

L. He et al. / Future Generation Computer Systems 28 (2012) 1177–1193 1189
(a) Impact on RT. (b) Impact on UCR.

(c) Impact on UHR.

Fig. 8. The impact of Authorization constraints on (a) mean response time of the workflows, (2) utilization of computing resources, and (3) utilization of human resources;
‘‘no auth’’ means there are no authorization constraints; ‘‘card = 9’’ and ‘‘card = 4’’ mean that the maximum number of tasks that a role can run simultaneously is 9 and 4,
respectively; TNUM = 16, |HT |:|HCT |: |ACT | = 7 : 7 : 2, MAX_DG = 4, EX_C = 18, EX_H = 18, RNUM = 6, UNUM = 18, MAX_U2R = 6, MAX_RCST = 4, NUM_SoD = 3,
NUM_BoD = 3, TD = 200, H = 2, NR = 16.
when the roles’ availability periods are shorter, it ismore likely that
the required roles are not available when a task requests the role
assignment, nomatter how low the tasks’ arrival rate is. This result
suggests that the temporal constraints have bigger impact on the
RT than the cardinality constraints, especially when the workload
level is low.

Through the modeling approach and the simulation results as
in Fig. 8, we are able to acquire the quantitative insight into how
much impact the authorization constraints can have. For example,
suppose the workflows’ RT is desired to be no more than 200 time
units. When there are not authorization constraints, the system
can accommodate a workflow stream with a mean arrival rate of
up to 0.065. However, when there are authorization constraints,
the workload level that the system is able to handle is reduced
to approximately 0.047, 0.033, and 0.012 in the case of ‘‘card = 9,
temp= 70%’’, ‘‘card= 4, temp= 70%’’ and ‘‘card= 9, temp= 40%’’,
respectively.

It can be observed from Fig. 8(b) and (c) that the utilization
of both computing resources and human resources decreases
when the authorization constraints are present, and that when
the constraints are tighter, the utilization decreases by a larger
extent. This is because when there are authorization constraints,
the tasks may have to wait for role assignment due to roles’
unavailability even if there are free resources. Consequently, the
utilization cannot be as high as when there are not authorization
constraints. Further, when the constraint is tighter, it is more likely
that such a situation will occur.

By comparing Fig. 8(b) and (c), it can be seen that the curve
trends are different in these two figures. In Fig. 8(c), UHR becomes
almost constant when the arrival rate reaches a certain level, while
UCR keeps increasing in Fig. 8(b) as the arrival rate increases
from 0.01 to 0.09. This can be explained as follows. In Fig. 8(c),
when the arrival rate of the workflows increases, the arrival
rate of HTs increases. When the arrival rate reaches a certain
level, the authorization constraints will become a bottleneck for
HTs’ executions, i.e., the time that HTs wait for human resources
is negligible while they spend a long time in waiting for role
assignment. In this situation, the utilization will not increase
no matter how high the workflows’ arrival rate is. In Fig. 8(b),
when the workflows’ arrival rate increases to a point where the
authorization constraints form a bottleneck, the UCR consumed
by HCTs will become constant. However, the arrival rate of ACTs
keeps increasing, and ACTs do not require authorization. Further,
since the utilization consumed by HCTs is capped, there are free
resources left to run ACTs. Therefore, UCRwill continue to increase
as the workflows’ arrival rate (also ACTs’ arrival rate) increases.

6.2. Impact of role constraints

Fig. 9 shows the impact of role constraints in terms of RT, where
‘‘no rcst’’ means that there is no role constraint applied to the
authorization, but other types of constraint are still in present and
the settings are the same as in Fig. 8. As can be seen from this
figure, when there are no role constraints (note that there are still
other constraints), the RT is very close to that achieved when there
are no authorization constraints at all. This result can be explained
as follows. Since there are not the role constraints, the tasks can
assume any role (only subject to the duty and role hierarchy
constraints). Consequently, when one role is not available (either
due to temporal constraint or cardinality constraint) for running a
task, it is very likely that another role is available.

The simulation is also conducted at the other extreme, i.e., set-
ting MAX_RCST to be 1, which means that a task can only assume
one particular role. The performance in terms of RT corresponds to

1190 L. He et al. / Future Generation Computer Systems 28 (2012) 1177–1193
(a) Impact on RT. (b) Impact on UCR.

(c) Impact on UHR.

Fig. 9. Impact of role constraints in terms of RT; the simulation setting is the same as those in Fig. 8.
the ‘‘rcst = 1’’ curve in Fig. 9. It can be seen that the RT is much
worse than other cases. This is due to the fact that every task is re-
stricted to run under a particular role. If that role is not available,
the task has no choice but to wait for authorization.

Fig. 9(b) and (c) show the impact of the role constraints on
UCR and UHR, respectively. It can be observed that when the role
constraints become stricter, both UCR and UHR decrease. Once
again, this is because the tasks have to wait for roles’ availability,
which causes the otherwise busy resources to be idle.

6.3. Impact of duty constraints

Fig. 10(a) and (b) show the impact of the BoD and SoD
constraints, respectively, on theRT. The results onUCR andUHRare
omitted, since the impact of duty constraints on UCR and UHR has
the similar trend as those presented in previous figures. Namely, if
the constraint has big impact on RT (causing RT to increase), then it
also has big impact on utilization (causing utilization to decrease).

It can be seen from Fig. 10(a) that when NUM_BoD is 8, the
RT deteriorates dramatically, especially when the arrival rate is
high. This result can be explained as follows. When NUM_BoD
is 8, at least 8 tasks in a workflow will be run under the same
role. Therefore, the workload is not balanced across different
roles, which harms the performance. Moreover, if that role is not
activated due to its temporal constraint, the tasks have to wait for
its activation. This result suggests that BoD has big impact on the
workflow performance.

Fig. 10(b) shows that the SoD constraints have a different
impact level. When the NUM_SoD increases from 3 to 8, the RT has
little increase. This is because the SoD constraint only rules out one
role for authorization and the rest of the roles are still eligible.

6.4. The authorization overhead caused by different types of con-
straints

Fig. 11 shows the authorization overhead caused by different
types of constraint. As can be observed from this figure, the results
in this figure are consistent with those presented in previous
figures. For example, SoD causes little overhead.

It can also be seen from this figure that the role hierarchy
constraint causes the overhead too. This is because when the role
hierarchy constraint is applied, more tasks assume the roles with
lower privileges, which can result in higher resource waiting time
for those roles, and may even cause the tasks to wait for role
assignment due to the cardinality constraints.

6.5. Impact of the EDF scheduling strategy

Fig. 12 compares the RT achieved by the FCFS scheduling and
the proposed EDF scheduling.

It can be seen from this figure that the EDF scheduling
outperforms the FCFS scheduling when the arrival rate is greater
than 0.04. The results can be explained as follows.When the arrival
rate is low, the number of tasks running in the system is low.
Therefore, the cardinality constraint will not pose as a bottleneck
and the EDF scheduling cannot manifest its effectiveness. When
the arrival rate is bigger, the proposed EDF scheduling takes into
account the cardinality number and the tasks’ arrival rate for roles,
and tends to first process the tasks assigned to the role with the
smaller cardinality number. Therefore, it reduces the chance that
the number of tasks running under a role reaches its specified
cardinality number. A closer observation from this figure shows
that when the arrival rate further increases (more than 0.08), the
advantage of the EDF scheduling diminishes. This may be because
when the arrival rate is very high, the number of the tasks running
under most roles reaches their cardinality numbers and under this
circumstance, the contribution of the EDF scheduling is limited.

6.6. Impact of changing resources

The impact of changing resources is investigated using the
following method. We first conduct the model simulation to
obtain the values of wHT

i (1 ≤ i ≤ RNUM), wHT and wCT

(which are discussed in Section 5.3.2), given the current resource
parameters. Then we set the expected waiting time w and use the

L. He et al. / Future Generation Computer Systems 28 (2012) 1177–1193 1191
(a) Impact of BoD. (b) Impact of SoD.

Fig. 10. The impact of duty constraints; the simulation settings are the same as in Fig. 8.
Fig. 11. The authorization overhead caused by different types of authorization
constraints; theworkflowarrival rate is 0.05; CARD=9; TEMP=70%; other settings
are the same as in Fig. 8.

Fig. 12. The impact of the EDF scheduling.

Fig. 13. Resource waiting time; the value at ri (1 ≤ i ≤ 6) corresponds to wHT
i , the

value at CT is wCT), and the value at HT is wHT ; the arrival rate of the workflows is
0.08; each role is set to have 3 users; the execution time of each task is 18; other
experimental settings are the same as in Fig. 8.

methods presented in Section 5.3.2 to change the resource quantity
accordingly. Finally, we conduct the model simulations again to
verify that the new resource parameters can achieve the desired
performance.
Table 3
The number of resources before and after the adjustment.

r1 r2 r3 r4 r5 R6 RP

Before 3 3 3 3 3 3 16
After 4 3 3 5 4 2 16

Fig. 13 shows the values of wHT
i , wCT , and wHT before and

after adjusting resources. The value at ri (1 ≤ i ≤ 6) in the
figure corresponds to the average resource waiting time of the
HTs assuming ri (i.e., wHT

i), the value at CT is the average resource
waiting time of computing tasks (i.e., wCT), and the value at HT is
the average resource waiting time of all HTs (i.e., wHT). In these
simulations, in order to investigate the impact of authorization
constraints on the tasks’ resource waiting time, each role is set to
have the same number of users (set to be 3) and each task has the
same execution time (set to be 18).

As can be seen from the ‘‘Before’’ data in this figure, although
each role has the same number of human resources and the
tasks have the same execution time, different roles have different
average resource waiting times. This is because the authorization
constraints may cause the unbalanced task arrival rates among
roles. This result suggests again that the authorization constraints
have impact on workflow performance. Further, it can be seen
from the ‘‘Before’’ data in the figure that wCT is less than wHT .
This indicates that under the current authorization constraints, the
capacity of the human resources is not adequate compared with
the computing resources, and therefore forms the bottleneck in the
system.

After we obtain the performance of the current resource
capacity in the system, we set the desired resource waiting time,
w, to be the average resource waiting time of the computing tasks,
i.e.,w = wCT .We then apply themethods proposed in Section 5.3.2
to adjust the number of human resources for each role, so that
wHT

i = w. Table 3 shows the number of resources before and after
the adjustment, where RP is the number of computing resources.
The columns labeled as ‘‘After’’ in Fig. 13 show the corresponding
resource waiting times after the resource adjustment.

As can be seen from the ‘‘After’’ data in Fig. 13, wHT
i and wCT

have the similar values after adjusting the resources as shown
in Table 3. It shows that changing resources can significantly
affect the performance, and that the resource adjustment method
proposed in this paper is able to achieve balanced performance
across roles as well as between human resources and computing
resources in the system.

7. Conclusions

This paper models the authorization and execution of hybrid
workflows consisting of human and computing tasks. The impact
of authorization on workflow executions is analyzed. The Timed

1192 L. He et al. / Future Generation Computer Systems 28 (2012) 1177–1193
Color Petri Nets (TCPN) formalism is employed to construct
the models. Various authorization constraints are modeled in
this paper, including role, temporal, cardinality, separation of
duty, binding of duty, and role hierarchy constraints. The
model is constructed in a modular fashion so that the model
construction can be automated; this makes it easy tomodel a large
collection of authorization policies and complex workflows. The
modeling mechanism has been implemented using the CPN Tools.
Authorization overhead and various performance metrics can be
computed from the constructedmodel, including those for system-
oriented performance and application-oriented performance. This
paper also proposes the methods to improve performance under
the authorization constraints.

Acknowledgments

This work is supported by the Leverhulme Trust (grant number
RPG-101), the National High-tech R&D Program of China (863
Program, Grant No. 2011AA01A203), the Key Program of National
Natural Science Foundation of China (61133005), the National
Natural Science Foundation of China (grant numbers: 61173166
and 60803130).

References

[1] E. Deelman, D. Gannon, M. Shields, I. Taylor, Workflows and e-science: an
overview of workflow system features and capabilities, Future Generation
Computer Systems 25 (5) (2009) 528–540.

[2] L. He, S.A. Jarvis, D.P. Spooner, H. Jiang, D.N. Dillenberger, G. Nudd, Allocating
non-real-time and soft real-time jobs in multiclusters, IEEE Transactions on
Parallel and Distributed Systems 17 (2) (2006) 99–112.

[3] C. Hsu, K. Huang, F. Wang, Online scheduling of workflow applications in grid
environments, Future Generation Computer Systems 27 (6) (2011) 860–870.

[4] Web services business process execution language version 2.0.
http://docs.oasis-open.org/wsbpel/2.0/wsbpel-v2.0.pdf, 2007.

[5] K. Gaaloul, A. Schaad, U. Flegel, F. Charoy, A secure task delegation model
for workflows, in: The Second International Conference on Emerging Security
Information, Systems and Technologies, 2008, pp. 10–15.

[6] T. Hara, T. Arai, Y. Shimomura, T. Sakao, Service CAD system to integrate
product and human activity for total value, CIRP Journal of Manufacturing
Science and Technology 1 (4) (2009) 262–271.

[7] D. Schall, S. Dustdar, M. Blake, Programming human and software-based web
services, IEEE Computer 43 (7) (2010) 82–85.

[8] Q. Zhao, X. Liu, D. Sun, T. Liu, Y. Li, Mashing-up rich user interfaces for human
interation in WS-BPEL, in: The 2010 IEEE International Conference on Web
Services, 2010, pp. 559–566.

[9] Video management workflow.
http://www.telestream.net/pdfs/whitepapers/wp-video-workflow-
management.pdf, 2010.

[10] Web services — human task (WS-HumanTask) specification version 1.1.
http://docs.oasis-open.org/bpel4people/ws-humantask-1.1.html, 2010.

[11] WS-BPEL extension for people (BPEL4People) specification version 1.1.
http://docs.oasis-open.org/bpel4people/bpel4people-1.1-spec-cd-06.pdf,
2009.

[12] G. Ahn, R. Sandhu, Role-based authorization constraints specification, ACM
Transactions on Information and System Security 3 (4) (2000).

[13] E. Bertino, J. Crampton, F. Paci, Access control and authorization constraints for
ws-bpel, International Conference on Web Services (2006) 275–284.

[14] J. Crampton, M. Huth, On the modeling and verification of security-aware
and process-aware information systems, Business Process Management
Workshops 100 (6) (2012) 423–434.

[15] J. Joshi, E. Bertino, U. Latif, A. Ghafoor, A generalized temporal role-based
access control model, IEEE Transactions on Knowledge and Data Engineering
17 (1) (2005) 4–23.

[16] Y. Lu, L. Zhang, J. Sun, Using colored petri nets to model and analyze workflow
with separation of duty constraints, International Journal of Advanced
Manufacturing Technology 40 (1–2) (2009) 179–192.

[17] X. Zhao, Z. Qiu, C. Cai, H. Yang, A formal model of human workflow, in: The
2008 IEEE Intl. Conf. on Web Services, pp. 195–202.

[18] D. Zou, L. He, H. Jin, X. Chen, CRBAC: imposing multi-grained constraints on
the rbac model in the multi-application environment, Journal of Network and
Computer Applications 32 (2) (2009) 402–411.

[19] M. Stuit, H. Wortmann, N. Szirbik, J. Roodenburg, Multi-view interaction
modelling of human collaboration processes: a business process study of head
and neck cancer care in a dutch academic hospital, Journal of Biomedical
Informatics 44 (6) (2011) 1039–1055.

[20] Y. Jin, S. Reveliotis, A generalized stochastic petri net model for performance
analysis and control of capacitated reentrant lines, IEEE Transactions on
Robotics and Automation 19 (3) (2003) 474–480.
[21] K. Jensen, L. Kristensen, Coloured Petri Nets. Modeling and Validation of
Concurrent Systems, Springer-Verlag, 2009.

[22] K. Jensen, L. Kristensen, L.Wells, Coloured petri nets and cpn tools formodeling
and validation of concurrent systems, International Journal on Software Tools
for Technology Transfer 9 (3) (2007) 213–254.

[23] D. Chakraborty, V. Mankar, A. Nanavati, Enabling runtime adaptation of
workflows to external events in enterprise environments, in: The 2007 IEEE
International Conference on Web Services, pp. 1112–1119.

[24] P. Delias, A. Doulamis, N. Doulamis, N. Matsatsinis, Optimizing resource
conflicts in workflow management systems, IEEE Transactions on Knowledge
and Data Engineering 23 (3) (2011) 417–432.

[25] V. Atluri,W.Huang, A Petri net based safety analysis ofworkflow authorization
models, Journal of Computer Security 8 (2/3) (2000) 209–240.

[26] L. He, K. Duan, X. Chen, D. Zou, Z. Han, A. Fadavinia, S. Jarvis, Modelling
workflow executions under role-based authorization control, in: IEEE
International Conference on Service Computing, SCC 2011, 2011.

[27] S. Manolache, Schedulability Analysis of Real-Time Systems with Stochastic
Task Execution Times, Ph.D. Thesis, Department of Computer and Information
Science, IDA, Linkoping University, 2002.

[28] Q.Wang, N. Li, Satisfiability and resiliency in workflow authorization systems,
ACM Transactions on Information and System Security 13 (4) (2010) 1–35.

[29] J. Crampton, A reference monitor for workflow systems with constrained task
execution, in: Proceedings of the Tenth ACM Symposium on Access Control
Models and Technologies, 2005, pp. 38–47.

[30] J. Wainer, P. Barthelmess, A. Kumar, W-RBAC — a workflow security model
incorporating controlled overriding of constraints, International Journal of
Cooperative Information Systems 12 (4) (2003) 455–486.

[31] W. Zuberek, Timed petri nets in modeling and analysis of cluster tools, IEEE
Transactions on Robotics and Automation 17 (2001) 562–575.

[32] V. Atluri, J. Warner, Supporting conditional delegation in secure workflow
management systems, in: Proceedings of the TenthACMSymposiumonAccess
Control Models and Technologies, 2005.

[33] P. Hung, K. Karlapalem, A secure workflow model, in: The Australasian
Information Security Workshop, AISW 2003, 2003.

[34] L. He, M. Calleja, M. Hayes, S.A. Jarvis, Performance prediction for running
workflows under role-based authorization mechanisms, in: Proc. of the 2009
IEEE International Symposium on Parallel & Distributed Processing, IEEE
Computer Society Press, 2009, pp. 1–8.

[35] M. Owen, J. Raj, BPMN and business process management, http://www.bpmn.
org/Documents/6AD5D16960.BPMN_and_BPM.pdf.

[36] http://msdn.microsoft.com/en-us/library/bb330937.asp.
[37] L. Kleinrock, Queueing System, John Wiley & Sons, 1975.

Ligang He is an Associate Professor in the Department
of Computer Science at the University of Warwick. He
studied for the Ph.D. degree in Computer Science at the
University of Warwick, UK, from 2002 to 2005, and then
worked as a post-doctor in the University of Cambridge,
UK. In 2006, he joined the Department of Computer
Science at the University of Warwick as an Assistant
Professor. His research interests focus on parallel and
distributed processing, Cluster, Grid and Cloud computing.
He has published more than 40 papers in international
conferences and journals, such as IEEE Transactions on

Parallel and Distributed Systems, IPDPS, Cluster, CCGrid, MASCOTS. He has been
a member of the program committee for many international conferences, and
has been the reviewer for a number of international journals, including IEEE
Transactions on Parallel and Distributed Systems, IEEE Transactions on Computers,
IEEE Transactions on Automation Science and Engineering, etc. He is a member of
the IEEE.

Chenlin Huang is an Associate Professor in the School of
Computer Science at the National University of Defense
Technology, China. His research areas are operating
systems, security and high performance computing.

KeweiDuan is currently a Ph.D. student in theDepartment
of Computer Science at the University of Bath, UK.
His research interests are in performance modeling and
evaluations and service computing.

http://docs.oasis-open.org/wsbpel/2.0/wsbpel-v2.0.pdf
http://www.telestream.net/pdfs/whitepapers/wp-video-workflow-management.pdf
http://www.telestream.net/pdfs/whitepapers/wp-video-workflow-management.pdf
http://www.telestream.net/pdfs/whitepapers/wp-video-workflow-management.pdf
http://docs.oasis-open.org/bpel4people/ws-humantask-1.1.html
http://docs.oasis-open.org/bpel4people/bpel4people-1.1-spec-cd-06.pdf
http://www.bpmn.org/Documents/6AD5D16960.BPMN_and_BPM.pdf
http://www.bpmn.org/Documents/6AD5D16960.BPMN_and_BPM.pdf
http://www.bpmn.org/Documents/6AD5D16960.BPMN_and_BPM.pdf
http://www.bpmn.org/Documents/6AD5D16960.BPMN_and_BPM.pdf
http://www.bpmn.org/Documents/6AD5D16960.BPMN_and_BPM.pdf
http://www.bpmn.org/Documents/6AD5D16960.BPMN_and_BPM.pdf
http://www.bpmn.org/Documents/6AD5D16960.BPMN_and_BPM.pdf
http://www.bpmn.org/Documents/6AD5D16960.BPMN_and_BPM.pdf
http://www.bpmn.org/Documents/6AD5D16960.BPMN_and_BPM.pdf
http://www.bpmn.org/Documents/6AD5D16960.BPMN_and_BPM.pdf
http://msdn.microsoft.com/en-us/library/bb330937.asp

L. He et al. / Future Generation Computer Systems 28 (2012) 1177–1193 1193
Kenli Li is a Professor in the School of Computer
and Communication at the Hunan University, China. He
received his Ph.D. Degree in Computer Science from
Huazhong University of Science and Technology, China in
2003. His research interests are parallel and distributed
computing, real-time and embedded systems.

Hao Chen is an Associate Professor in the School of
Computer and Communication at the Hunan University,
China. He received the Ph.D. Degree in Computer Science
from Huazhong University of Science and Technology,
China in 2005. His research interests include virtual
machines, operating systems, distributed and parallel
computing and security. He is a member of the IEEE.
Jianhua Sun is an Associate Professor in the School of
Computer and Communication at the Hunan University,
China. She received the Ph.D. Degree in Computer Science
from Huazhong University of Science and Technology,
China in 2005. Her research interests are in security and
operating systems.

Stephen A. Jarvis is Professor of High Performance and
Distributed Computing at the University of Warwick and
is co-organiser for one of the UK’s High End Scientific
Computing Training Centres. He has authored more than
130 refereed publications (including three books) and has
been a member of more than 50 programme committees
for IEEE/ACM international conferences and workshops
since 2003, including: IPDPS, HPDC, CCGrid, SC, MASCOTS,
DSN, ICPP. He is a former member of the University of
Oxford Computing Laboratory, and in 2009 was awarded
a prestigious Royal Society Industry Fellowship in support

of his industry-focused work on high-performance computing.

	Modeling and analyzing the impact of authorization on workflow executions
	Introduction
	Related work
	Timed Color Petri-Nets
	Models
	Role and user assignments subject to temporal and role hierarchy constraints
	Binding of duty and separation of duty constraints
	Assembling authorization modules
	Modeling workflow execution under authorization
	HCT and ACT executions under authorization
	HT execution under authorization
	Workflow execution under authorization

	Model simulation and analysis
	Analyzing overhead caused by authorization
	Overhead by cardinality and temporal constraints
	Overhead by role, duty and hierarchy constraints

	Calculating other performance metrics
	Improving performance under the authorization control
	Improving performance by changing the scheduling strategy
	Improving performance by adjusting resources

	Experimental studies
	Impact of cardinality and temporal constraints
	Impact of role constraints
	Impact of duty constraints
	The authorization overhead caused by different types of constraints
	Impact of the EDF scheduling strategy
	Impact of changing resources

	Conclusions
	Acknowledgments
	References

