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SUMMARY

With the rapid development of smartphones in recent years, we have witnessed an exponential growth of the
number of mobile apps. Considering the security and management issues, network operators need to have
a clear visibility into the apps running in the network. To this end, this paper presents a novel approach
to generating the fingerprints for mobile apps from network traffic. The fingerprints that characterize the
unique behaviors of specific mobile apps can be used to identify mobile apps from the real network traffic.
In order to handle the large volume of traffic efficiently, we use non-negative matrix factorization (NMF)
to perform traffic analysis to cluster similar network traffic into groups. Then, access patterns of individual
apps that are extracted from each group can be used as fingerprints distinguishing apps from others uniquely.
The experimental evaluations show that the proposed approach can identify the mobile apps from random
and mixed network traffic with high precision. Copyright © 2015 John Wiley & Sons, Ltd.
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1. INTRODUCTION

With the increasing dependence on smartphones to fulfill a wide range of tasks, more and more
mobile apps have been developed to facilitate our daily life. As a result, the Internet traffic is increas-
ingly composed of the traffic incurred by mobile apps. It was reported that the mobile apps made
up 47% of Internet traffic. A survey carried out by one large cellular operator [1] shows a growth of
8000% of cellular data traffic over the past 4 years, and it is expected to rise to 10.8 exabytes per
month by 2016. This shift of Internet traffic poses a great challenge on network operators to rec-
ognize mobile apps running in the network, which is important for traffic engineering and billing,
network planning, provisioning, and network security.

In order to have a clear understanding of mobile apps in cellular networks, it is necessary to
classify the apps’ traffic and perform protocol identification. At present, many methods of traffic
classification have been proposed, and most of them are based on the following three aspects [2]:

� packet-level traffic classification, which mainly focuses on the features such as the distribution
of packet size, the distribution of time interval of packet arrival, and so on.
� flow-level traffic classification, which analyzes the features of flows and the arrival process

for a TCP connection or a UDP flow. Flow usually refers to a five-tuple, consisting of source
Internet protocol (IP), destination IP, source port, destination port, and application protocol.
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� stream-level traffic classification, which considers the host pair and the traffic between them,
referring to a three-tuple composed of source IP, destination IP, and application protocol.

To some extent, these methods can classify the network traffic, but they are not effective enough
to classify the traffic of mobile apps and identify the specific apps from real network traffic. Several
approaches have been proposed to address the issue of understanding the behaviors of mobile apps
by analyzing network traffic. For example, the research conducted by Xu et al. [3] uses the user-
agent field in the Hypertext Transfer Protocol (HTTP) header to identify apps, which only works for
the certain mobile platform that has an app identifier in the user-agent field such as iOS, but not for
Android apps whose user-agent field does not contain the corresponding identifier. Other work uses
the host field in the HTTP header. However, it is not sufficient because the same host often provides
services for multiple apps. For instance, the same host www.sina.com is typically used for different
apps, such as weibo and sina news.

In this paper, we mainly focus on Android apps. Results from existing studies show that a vast
majority of Android apps use the HTTP/HTTPS protocol, so we can perform traffic classification
by only considering HTTP/HTTPS traffic. The method proposed in [4] classifies the traffic into
third-party and non-third-party traffic. In addition, it needs to collect apps’ identifications in the
source code or in the manifest files that often is not always accessible, so it is not simple enough
to achieve the goal of app identification. Therefore, in this work, we aim to develop simple and
effective techniques such as non-negative matrix factorization and multiple similar strings clustering
to extract the fingerprints from app’s network traces obtained by manipulating the apps on a real
smartphone. In our system, we do not need to rely on the availability of the source code.

In summary, the main contributions of our work are the following:

� We present the design and implementation of a system that can automatically generate
fingerprints for mobile apps. Compared with previous schemes, our system is more effective.
� We present an algorithm to extract the fingerprint for each cluster of traffic, and through a

large number of experiments, we can obtain the best parameters in our algorithm to extract the
fingerprints.
� We perform extensive evaluation to demonstrate that our system can identify the mobile apps

from network traffic with high precision.

The rest of the paper is organized as follows. Section 2 describes the primary principle of the
method in our system. Section 3 gives a detailed explanation of system design. The evaluation is
presented in Section 4. The related work is discussed in Section 5 and Section 6 concludes.

2. MOTIVATION

The key observation in this work is that every mobile app can exhibit specific network behavior
that can be used to generate its unique feature to differentiate the diverse mobile apps. We call the
unique features of mobile apps as fingerprints. It is analogically similar to human DNAs. Because
we only consider the apps that use HTTP as the communication channel, the network behavior can
be characterized in terms of different HTTP requests. The fingerprints are the abstract of these HTTP
flows that may be different in terms of the HTTP method, hosts connected, uniform resource locator
(URL) paths or query strings, and so on. Concretely speaking, only the specific tokens in network
messages and the hosts are essential for identifying the apps.

On the other hand, with the technology of machine learning becoming more and more mature,
many traffic identifying methods based on machine learning have been proposed. The course of
machine learning often include the building of classification model to be used to classify traffic. In
our paper, we can utilize it to extract the fingerprints in our system.

In order to more clearly explain the challenges of automatically extracting application-level fin-
gerprints of mobile apps, we first introduce the mobile app’s structure using Android as the target
platform. Android apps are usually written in Java with some additional native code. A typical
Android app consists of separate screens that are called activities, each of which typically contains
a set of GUI elements such as pop-ups, text boxes, text view objects, check boxes, and so on. In
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order to interact with an app, users navigate different activities using the said GUI elements, which
incurs transitions between activities. Therefore, activity transitions and coverage are fundamental,
and activities are the main interfaces presented to an end user. Activities can serve for different
purposes. For example, in a typical news app, an activity home screen shows the list of current
news; selecting the headline of a news will trigger the transition to another activity that displays the
full news item. Activities are usually invoked from within the app, although some activities can be
invoked from outside the app if the host app allows [5].

For example, weibo is one of the most popular app in China. It is a social app for mobile user
to share, spread, and obtain new things. The typical user interactions with the app are as follows.
A user first open the app; then the user can click on an option to choose which among the desired
function; finally, a table of all kinds of activities is fetched from the Internet and presented according
to the choices, and the user can proceed to play with other functions they like. Figure 1 shows how
the activity transition graph is created as a result of a user interacting with the weibo app.

In the aforementioned process, both the fetching of activities and the playing of functions involves
network access. In this paper, we regard these as different network behaviors. As we know, every
app may have a large number of network behaviors, and it is important to collect network traces
for fingerprint extraction to reveal the network behaviors as many as possible. Consider an extreme
case when the weibo app is executed only once, and many activities are not reached in a single
execution. The fingerprints generated from the network trace will be too specific to be useful for app
identification. So it is important to run the app many times to ensure that all of the network behaviors
can be covered, in order to collect a significant part of the app’s network behavior to produce the
fingerprints that can be used to successfully identify the apps.

The key idea behind our fingerprint extraction algorithm is to identify the invariant parts of the
message flows inherent to an app. If the invariants is unique to the app, they can be used to distin-
guish different apps in network traffic. Existing researches show that invariant strings in the URL and
the host field can be used to uniquely identify mobile apps. Figure 2 shows exemplar HTTP flows
we extract from the network trace of weibo and omit the fields that are not useful for identification.

We hope that we can extract the fingerprints from these HTTP flows as shown in Table I.
Of course, this simple example is only used to illustrate the general idea of fingerprints. Extract-

ing fingerprints from real mobile apps is relatively more complex, and the detailed discussion is
presented in the following sections.

Figure 1. An example activity transition scenario from weibo app.
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Figure 2. The HTTP flows.

Table I. Fingerprints example.

GET webp360 Host:ww2.sinaimg.cn

GET webp360 Host:ww4.sinaimg.cn

GET woriginal Host:ww2.sinaimg.cn

GET woriginal Host:ww4.sinaimg.cn

3. SYSTEM DESIGN AND IMPLEMENTATION

Our fingerprints generating system consists of four main components: traffic collector, preprocessor,
clustering module, and fingerprint generator. Figure 3 shows the main building blocks of our system
and their main functionalities are listed as follows.

(1) Collecting the traffic of a specific mobile app. We can use wireshark to monitor the wireless
local area network to collect the traffic by running the target app on the smartphone.

(2) Preprocessing the collected traffic, which include parsing the HTTP flows, filtering the
unnecessary parts, and embedding the messages into a vector space.

(3) Clustering the HTTP flows (i.e., the messages) based on the similarity measurement between
messages. Through clustering, all of the messages will be labeled so that they can be used to
extract the fingerprints in later steps.

(4) Extracting the fingerprints using the methods detailed in later sections. The fingerprints rep-
resent the invariance of network communication patterns that is exploitable to identify apps
from the network trace.

3.1. Traffic collector

Traffic Collector mainly include two parts:
Running mobile apps. As introduced in Section 2, in order to obtain the fingerprints of the target

app, we need to run the app for multiple times to explore the network activities as complete as
possible. There are several existing methods to run mobile apps automatically, such as Automatic
Android App Explorer (A3E), a tool proposed in [5], to systematically explore real-world, popular
Android apps running on actual phones to collect network traffic. But these methods are designed to
explore some stand-alone activities rather than the activities related to network behaviors. But our
goal is to explore the activities related to network behaviors, so we choose to run the mobile apps
manually to collect network traffic.

Collecting traffic. For collecting raw network traffic, we use wireshark [6], which is one of the
most popular network protocol analyzer and the de facto tool for packet-level traffic collection. We
use it to monitor the wireless local area network in our experiment laptop. The target app runs on
the smartphone that connects to the laptop using WIFI.
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Figure 3. Overview of fingerprints extractor.

3.2. Preprocessor

In this part, we need to transform the raw packet traffic obtained to HTTP flows before perform-
ing other operations, because our approach is based on HTTP flows as introduced in Section 2. The
preprocessor consists of three steps. First, we parse the raw packets into HTTP session messages.
Then, we filter out the unnecessary information in the HTTP messages that is not essential to pro-
duce the fingerprints. Third, the HTTP messages are transformed and embedded into a vector space
to facilitate the clustering algorithm.

3.2.1. HTTP parsing. Due to the fact that the majority of mobile apps use HTTP as the main com-
munication protocol, we first transform the raw traffic collected to HTTP messages. There already
exist many tools that can achieve this goal. In this work, we choose justiniffer [7], which is a network
protocol analyzer that provides a wide set of functions in traffic analysis, such as capturing net-
work traffic, emulating Apache web server logs in customizable ways, tracking response times, and
extracting all ‘intercepted’ files from the HTTP traffic. With justiniffer, we can transform the raw
packet traffic into HTTP messages, which contain the necessary information in the HTTP header
to produce fingerprints. An HTTP message is an atomic exchange of a byte sequence between the
client and server. A message is a string of bytes contained in network communication and composes
of five main components including request-URI, HTTP-version, accept, host, and user-agent. For
example, an HTTP message typically looks like this:

GET /webp360/7deb0325jw1emwe2f9d47j20c807m0td.jpg HTTP/1.1 Host:
ww2.sinaimg.cn Accept:- User-Agent:HM NOTE 1W_4.2.2_weibo_4.6.2_
android

3.2.2. Filtering. After tokenizing each message, the HTTP request can be broken into various parts
including method (m), page (p), and query (q). Page can be further split into a number of page-
components (pcs) and filename (fn). Query can be divided into key-value pairs. Through extensive
experiments, we observed that the filename in certain fields of the message such as the request-URL,
HTTP-version, accept, and user-agent are not useful to identify apps. So we can delete these parts
in the message to lower the complexity in the later step of clustering. After filtering, the HTTP mes-
sages only include the method, request-URI, and host field. On the other hand, abnormal messages
such as the HTTP responses indicating errors can also be filtered out because these messages do not
convey any useful information. The following is the example of a filtered HTTP message:

GET webp360 Host:ww2.sinaimg.cn

3.2.3. Embedding. To characterize the content of a message x, we can model it as a sequence of
bytes, that is, x 2 B�, with B D ¹0; : : : ; 255º. At the same time, we need to extract an alphabet W
of relevant strings from a set of messages in order to embed the message into a vector space, which
is a necessary step and provides a feasible model for the clustering algorithm.
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Thus, what we should do next is to transform the HTTP messages into vector representation that is
used as the input for the traffic clustering. To this end, we use Sally [8], a tool for embedding strings
in vector space that allows for applying a wide range of learning methods to string data, to perform
this task. After the message transformation, to infer common structures from a pool of messages,
we need a similarity measure that is capable of analyzing discriminative features. We tokenize the
byte sequence via pre-defined separators S and define the tokens as

W D ¹¹0; : : : ; 255º n Sº�:

Then, we define an embedding function � W B? 7�! RjW j that maps the byte sequence to a
feature vector, which records the occurrences of all possible words W according to the separators,
that is, �.x/ WD .�!.x//!�W [9]. For example, if we only consider the set of separators S D ¹tº,
we will get the following embeddings:

�."Hello World, Thanks"/ D .0; :::; 1Hello; 1 World,; 1Thanks:::; 0/T �RjW j:

For clustering the messages, the analysis has to focus on discriminative features in order to reduce
the potential negative effect of high-dimension vector space on computational complexity. Volatile
features, including randomly generated nonces or cookies and constant tokens that frequently occur
in a message, always lead to an unnecessary bloated vector space. So constant and highly volatile
components that do not augment semantic of features should be filtered out from the feature space.
More precisely, we employ a statistical t-test for identifying non-constant and non-volatile features
by testing whether their frequency is significantly different from 0 and 1 (see [10] for more details).
Given these embeddings and the reduced feature space, we are now able to map these messages to
the vector space. Figure 4 illustrates the process of embedding.

3.3. Clustering

After mapping messages into the vector space reflecting characteristics captured by the alphabet
W , we can perform clustering on the vectorized messages. Because the messages share several
substrings that are close to each other in similarity and network messages with different content
exhibit larger geometric distances, we can use the concept of matrix factorization to cluster these
messages. Given a set of messages P D ¹p1; : : : ; pN º, we first define a data matrix X containing
the vectors of P as columns:

X WD Œ�.m1/; : : : ; �.mN /� 2 R
f �N :

To seek a solution for X that retains most information but with fewer base directions, we break
the matrix X into two matrices U 2 Rf �L and V 2 RL�N such that L << f and

X � UV D

basis‚ …„ ƒ
Œu1; : : : uL� Œv1; : : : vN �„ ƒ‚ …

coordinates

Figure 4. Embedding process.
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The columns u1; : : : uL 2 Rf of U form a new basis (i.e., denoting all kinds of message), where
the dimensions of each base direction ui are associated with the alphabet A. In this paper, the U and
V are strictly positive matrices, so the matrix factorization method we use is called non-negative
matrix factorization (NMF).

In NMF, the matrix U and V only contains non-negative entries. Non-negative entries in the basic
vectors are a more natural representation for sequential data, as each string contributes positively to
the basis representation. For a chosen dimensionality L, the factorization is defined in terms of the
minimization criterion:

.U; V / D argmin k X � UV k s:t: Uij > 0; Vjn > 0

Because of the positivity constraint, the matrix U can be interpreted as a new basis (the parts of a
message), while the matrix V contains the coordinates in this newly spanned space (the weights of
the different parts), so these coordinates can be used to ultimately assign a message to a cluster by
finding the position with the maximal weight.

To calculate U and V , suppose that X 0 D UV , we use the gradient descent method to solve the
formula. With this method, we first initialize U and V with certain values, and then calculate the
sum of the squares of the difference between UV 0 arithmetic product with true value in X in the
corresponding position. At last, we can iteratively reduce the error until convergence. Here, we use
squared error to calculate, and the formula is as follows:

e2ij D .xij � x
0
ij /
2 D

 
xij �

LX
LD1

uiLvLj

!2
(1)

In order to minimize the error, we alter the values of Uij and Vij as the direction of gradient
descent. So we can compute the partial derivatives for Equation (1), and the outcomes are

@

@uiL
e2ij D �2

�
xij � x0ij

�
.vLj / D �2eij vLj

@

@vLj
e2ij D �2

�
xij � x0ij

�
.uiL/ D �2eijuiL

After calculating the gradient, UiL and VLj can be further updated with

u0iL D uiL C ˛
@

@uiL
e2ij D uiL C 2˛eij vLj (2)

v0Lj D vLj C ˛
@

@uLj
e2ij D vLj C 2˛eijuiL (3)

The parameter ˛ in the aforementioned formula is the gradient descent constant, and it is usually
set to a small value such as 0.0002. With the updating rules, we can reduce the error step by step
until convergence.

The algorithm described previously is only a simple implementation, and it will become very
complex in reality. So we normalize it to prevent over-fitting by joining the parameter ˇ to change
the error formula as follows:

e2ij D

 
xij �

LX
LD1

uiLvLj

!2
C
ˇ

2

LX
LD1

.k U k2 C k V k2/

The parameter ˇ is used to control the proportion of u and v to avoid oversize in matrix. In reality,
we often set ˇ to the value between 0 0.02. So Equations (2) and (3) are changed to
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u0iL D uiL C ˛
@

@uiL
e2ij D uiL C ˛.2eij vLj � ˇuiL/

v0Lj D vLj C ˛
@

@uLj
e2ij D vLj C ˛.2eijuiL � ˇvLj /

After X is decomposed into U and V , in the matrix V , we can assign labels for N messages
based on the weight. For example, the second message’s maximum weight is the third line. Then we
can assign the label ‘three’ to the second message.

The following example of NMF shows the clustering process. To keep things simple, we choose
four HTTP messages and map them to a matrix X as shown in the succeeding discussions using the
method introduced in Section 3.2.3. Then we decompose the matrix X into two matrices U and V
with the NMF algorithm.

In matrix V , we search the position of the maximum weight of every column and cluster them
based on the position. For instance, in this example, we can observe that n1’s maximum weight is
l2, n2’s maximum weight is l1, n3’s maximum weight is l2, and n4’s maximum weight is l1. So at
last, we can assign the label l2 to n1, assign the label l1 to n2, assign the label l2 to n1, and assign
the label l1 to n2, that is, we cluster the messages.

3.4. Fingerprints generator

After clustering the messages, we can obtain the cluster label for each message. Then we can assign
the messages in each cluster with the cluster label and extract the fingerprints for each cluster. To this
end, we perform three operations including merging, producing and optimizing as detailed below.

3.4.1. Merging. Unlike message clustering that only obtains the cluster label of each message, here,
we focus on assigning messages with the same label to a class. The merging operation is shown in
Figure 5.

For instance, in the example of NMF as shown in Figure 6, we can merge n1 and n3 with the
same label l2 into a cluster, and merge n2 and n4 with the same label l1 into another cluster. Thus,
all similar messages can be merged into a cluster that can be used generate the fingerprints.

Figure 5. Merging process.

Figure 6. The example of NMF.
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3.4.2. Producing. After obtaining each cluster of messages, we can now produce the fingerprints.
For each cluster of messages, we first calculate the length and discard those messages whose length
is less than two. For the remaining messages, we classify them based on the length of every message
and cluster messages with the same length to a class.

For messages with the same length, we count the number of the same message in a cluster; If
the number is greater than a constant number that is chosen based on how many times the app was
tested, we only keep one copy of the message. Otherwise, we discard the messages that may sneak
in because of impure traffic during collection such as advertisement. The producing operation is
shown in Figure 7.

For example, the weibo app is run three times in the experiment and there are several pieces of
messages with the same length in a cluster extracted from the collected raw traffic, as shown in
Table II.

As introduced previously, we first calculate the length of each message, and all the messages are
retained because all are longer than two. Then, we observe that the number of the message GET
wap720 Host:ww3.sinaimg.cn is four, which is bigger than three, and the number of the
message GET web360 Host:www.baidu.cn is two, which is less than three. So the former is
reserved and the latter is discarded. Finally, we have the fingerprint from these messages in a cluster:

GET wap720 Host:ww3.sinaimg.cn

3.4.3. Optimizing. The amount of fingerprints produced is typically huge, and many of them are
similar and could be merged further. Therefore, we propose an optimization to address this issue.
The main idea of the optimization is a piecewise comparison of these fingerprints and combining
similar fingerprints that are measured with the longest common strings (LCSs). We call the method
of combining fingerprints as multiple similar strings clustering (MSSC), which is shown in Figure 8.

Longest common strings is used to measure the similarity between two fingerprints. It is different
from the LCS (traditional longest common substring). The traditional longest common substring is
composed of a series of characters, but the longest common substring in this paper consists of a set of
substrings, which is called the longest common substrings. For example, given two strings: Hello
world I am coming and Hello china I am going, the traditional longest common

Figure 7. Producing fingerprints.

Table II. Fingerprints example in a cluster.

GET wap720 Host: ww3.sinaimg.cn

GET wap720 Host: ww3.sinaimg.cn

GET wap720 Host: ww3.sinaimg.cn

GET wap720 Host: ww3.sinaimg.cn

GET web360 Host: www.baidu.cn

GET web360 Host: www.baidu.cn
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substring between them is Hello I am oing, but the longest common substrings between them
in this paper is Hello I am.

The typical algorithm of solving traditional longest common substring is based on the dynamic
programming to find the length of the LCS for all substring of the candidates. It mainly uses the
following optimal substructure property to implement the algorithm.

� ifXŒm� D Y Œn�; then LCS.Xm; Yn/ D LCS.Xm�1; Yn�1/CXŒm�
� ifXŒm�Š D Y Œn�; then LCS.Xm; Yn/ D Max.LCS.Xm�1; Yn/; LCS.Xm; Yn�1//

The X and Y are two strings need to be compared, m and n are the length of the two strings, and
the LCS indicate the longest common strings.

Our LCSs algorithm is similar to the traditional common string algorithm. As introduced ear-
lier, the traditional longest common substring is composed of a series of characters, and the longest
common substrings in this paper is consists of a set of substrings. So in our longest common sub-
string algorithm, we only add one step that is to split our target string like Hello world I
am coming by some predefined symbols such as spaces into multiple substrings, which are then
regarded as different characters in the traditional longest common substring. The remaining oper-
ations are the same with the traditional longest common substring algorithm. Next, we describe
the MSSC algorithm that is used to combine similar messages obtained previously. The MSSC
algorithm is as follows:

The main purpose of MSSC is to cluster similar strings into a single string. We assume there
are n strings in the following discussion of the MSSC algorithm. In order to evaluate the similarity
between two strings, we introduce a parameter ˛ to indicate the similarity. In our MSSC algorithm,
we calculate the length of LCSs for each pair of strings iteratively. If the LCSs is greater than ˛
multiplied by the minimum length between the two strings, we discard this pair of strings and keep
the LCSs. Otherwise, we keep the two strings and discard the LCSs. It is described in detail in
Algorithm 1.

The following example is used to help understand the algorithm. Suppose there are three
fingerprints as shown in Table III.

We first calculate the LCSs of the first and the second, and find that the LCSs satisfy the similarity
measurement. So we delete the two messages and continue comparing the LCSs with the third one.
Then, we compare the LCSs with the third one, and find that the LCSs of them also satisfy the

Figure 8. Optimizing fingerprints.

Table III. Fingerprints.

GET wap360 Host: ww3.sinaimg.cn

GET thumb180 Host: ww3.sinaimg.cn

GET thumb150 Host: ww3.sinaimg.cn
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Algorithm 1 MSSC
Require:

The array of the strings s[n];
Ensure:

The array of the string s[] that have been processed;
1: for i 0 to n do
2: for j i C 1 to n do
3: lcs  LCSs(s[i], s[j]) //the longest common strings
4: if len(lcs)> ˛ * Min (len(s[i]), len(s[j])) then
5: s[i] lcs

6: delete s[j]
7: else
8: continue
9: end if

10: end for
11: end for

similarity measurement. Thus, we delete the first LCSs and the third message. At last, we will obtain
the fingerprint from this example like this:

GET Host:ww3.sinaimg.cn

4. EXPERIMENTAL EVALUATION

4.1. Experimental setup

The smartphone used for the experiments was HM NOTE 1W running Android version 4.2.2 and
Linux kernel version 3.4.39. The phone have Magny-Cours CPUs running at 1.7 GHz. We controlled
the experiments from a desktop PC running Linux Mint 16. The smartphone is connected to the
WIFI of this desktop that runs the fingerprints extracting system. The mobile apps we chose are
weibo, weixin, and zedge, which are very popular apps at present. Among them, the weibo and
weixin are very popular social apps. The zedge is one of the most popular apps in the Android market
(more than 10 million downloads). Zedge is a simple previewer and downloader for mobile phone
wallpapers, ringtones, and notification sounds.

The experiment evaluation is divided into two parts: the first is the extraction of fingerprints for
each app and the second is the evaluation of the accuracy of the fingerprints.

4.1.1. Extraction of fingerprints. To ensure the precision of the fingerprints we extracted, we should
collect enough raw traffic to guarantee covering all of the network behaviors of each app. So we
run these apps for multiple times in our experiment to extract their fingerprints using the method
discussed previously. For example, we run the weibo app three times on the smartphone without any
other apps concurrently executing on the phone; based on the approaches introduced in this paper,
we can produce the final fingerprints of the testing apps.

4.1.2. Evaluation of fingerprints. To evaluate the system, we conducted four experiments. The mix-
ture traffic is needed, and it should be collected separately. So we run these apps including weibo,
weixin, zedge, and others on the smartphone concurrently. To make the collected traffic resembling
the traffic in real network, these apps need to be run randomly by hand. The experiments we carried
out are as follows:

The first experiment. The first experiment we conducted is that we use the fingerprints of the three
apps to match their corresponding traffic that are used to extract the fingerprints. We find that in
3626 weibo messages, 6099 zedge messages and 1388 weixin messages, there are 2895, 5696, and
987 matches with fingerprints, respectively, which illustrate that most of the messages of the testing
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apps can be matched successfully with extracted fingerprints. The unsuccessful matches are due to
the impact of messages generated from noise traffic. The results are shown in Figure 9.

The second experiment. In order to further verify the effectiveness of the fingerprints, we con-
ducted the second experiment. We collected the three apps’ pure raw traffic individually. But at this
time, we need neither to run the apps many times nor to run all functions of the applications. We
match the fingerprints we extracted previously with the traffic we collected this time, respectively.
We observed that 600 out of 705 weibo messages are matched, 682 out of 731 zedge messages, and
290 out of 340 weixin messages were matched. The results are shown in Figure 10.

The third experiment. This experiment was conducted to validate the accuracy of fingerprints.
To this end, we performed cross-verification among different apps. Concretely, we used the finger-
prints from zedge and weixin to match the messages (705) from weibo. Similarly, we performed the
matching between weibo, weixin, and zedge, and between zedge, weibo, and weixin. The outcomes
are shown in Figure 11. The blue color represents the messages of the app whose fingerprints are
used in this matching process, and the yellow and orange colors represent other messages of the
remaining apps, which demonstrate the accuracy of the extracted fingerprints.

The fourth experiment. The fourth experiment uses the fingerprint of each of the three apps to
separately match the mixed traffic of the three apps and other traffic we collected. The mixed traf-
fic totally includes 2150 messages. According to the result of the matching step, we can infer
that there are 402 messages belonging to weibo, 128 messages belonging to weixin, and 277 mes-
sages belonging to zedge. In addition, some unknown traffic is also included. The results are
shown in Figure 12, and it shows that our method can effectively identify the fraction of app’s
traffic in network.

Figure 9. Matching with the traffic used extracting fingerprints.

Figure 10. Matching with the new collected pure traffic.
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Figure 11. Matching with the fingerprints not belonging to the app.

Figure 12. Matching with the mixed traffic.

The first experiment shows that our system can identify apps from the network trace, and in order
to prove the accuracy of the experiments, we have tested three different apps. The second experiment
prove the effectiveness of our extracted fingerprints. The third and the fourth experiments validate
the accuracy of the fingerprints extracted. In summary, the results from these experiments indicate
that our system can correctly recognize the apps occurring in the network traffic. The most important
is that our method only depends on the network traffic and does not need to analyze the apps to
classify them.

4.2. Performance

We conducted the performance evaluation from three aspects: execution time, complexity, and fault
tolerance.

Execution time. First, we calculate the execution time of producing the fingerprints for the three
apps. It takes about 62.10 s to extract the fingerprints for weibo, 63.64 s for zedge, and 61.04 s for
weixin, which indicate the relatively low complexity in extracting fingerprints. On the other hand,
we find that most of the execution time is spent on the NMF clustering algorithm. As for future
work, we plan to leverage the parallel computing power of multi-core and GPU systems to improve
the performance when dealing with larger dataset.

Second, we calculate the time of matching each app’s fingerprints with the mixed traffic. The
results are shown in Figure 13, which illustrates that the matching time increases with the increasing
of the number of fingerprints and source messages (i.e., the raw traffic).

Complexity. Our system relies only on the raw network traffic to perform the fingerprints extrac-
tion with no need to access the source code or any specific information of the apps, as compared
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Figure 13. Time of matching.

with the system presented in [4] that classifies the Android apps’ traffic to Ad and non-Ad traf-
fic. For the Ad traffic, specific keywords from the manifest file of the apps are needed, which often
incurs manual intervention and extra complexity. Our system directly extracts unique fingerprints
from raw traffic without additional complexities.

Fault tolerance. First, in collecting the raw network traffic, it is inevitable to let some noise
traffic such as the advertisement traffic sneak in. Second, in transforming raw packets to HTTP
messages, we cannot completely prevent any errors because of protocol parsing, which would result
in unnecessary messages occurring. Even with these potential noise data, our system can effectively
extract fingerprints to identify mobile apps.

5. RELATED WORK

With the development of social network, the data generated from social network are becoming more
and more huge. A large body of work have been conducted to analyze the social network. On the
one hand, the analysis of social network concentrates on the relations among persons from survey or
data obtained from research. These works include ONA surveys [11], which is based on the survey
and data, Yed, which is based on Java program for drawing complex diagrams developed by the
University of Tubingen [12], and the Proximity, an open-source software under development by the
University of Massachusetts Knowledge Discovery Laboratory. They are specifically designed for
social network analysis and other similar applications [13]. All of these methods focus on mapping
social network.

On the other hand, for analysing the social network, many method based on network traffic clas-
sification have been put out. For classifying the network traffic and identifying the applications
running in the network, they have proceed many research including the classification method based
on the port number [14], the method based on payloads [15], and the clustering technique based on
machine-learning [3, 16]. The approaches based on the port number are mainly designed for identi-
fying different P2P protocols and are not suitable for other types of applications. The payload-based
methods need the real payloads of packets that are often not accessible or are encrypted. In addition,
there are some approaches proposed that focus on generating signature of Android apps using the
statistical information such as packet sizes. All of these methods can classify apps traffic; however,
these techniques do not work well for clustering mobile apps traffic and identifying them from the
mixed network traces.

Considering the fact that a majority of the mobile apps’ traffic is conveyed using the HTTP pro-
tocol, and can be distinguished from each other by their HTTP requests in the URLs and the hosts
they connected, recently, many studies on Android app behaviors have been conducted [3, 16]. But
they do not propose a systematic method to classify the mobile app traffic to perform app identifica-
tion. NetworkProfiler [4] analyzed the Android app network behaviors to extract the fingerprints for
Android apps, but it involves additional complexity such as manually analyzing specific information
in apps’ code to aid the fingerprints generation. AppPrint [17] is a system that learns fingerprints of
mobile apps via comprehensive traffic observations. These fingerprints identify apps even in small
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traffic samples. Rieck and Laskov [18] presented a new clustering technique for network traffic,
which can classify the network traffic with high accuracy. There has been much work on analyz-
ing Android apps for malware detection. But most of these target at monitoring apps [19] or static
analysis of application code [20]. None works well for our purpose of a simple and effective app
identification system for mobile networks.

6. CONCLUSIONS

In this paper, we present the design and implementation of a system to extract the fingerprints
from mobile apps. The fingerprints can be used to uniquely identify apps in mobile network traffic.
The proposed approach is superior in terms of automation and efficiency as compared to previous
methods. The experimental evaluations show that our system can identify the mobile apps from
random and mixed network traffic with high precision. As for future work, we are planning to
improve the scalability of our approach and enhance our system to handle real-time network traffic
analysis and support fingerprints update.
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