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Abstract 

I n  this paper; we present U thorough study about the topo- 
logical properties of Gnutella network, which provides us 
insight into the nature of underlying system, helps us design 
high performance algorithms and generates more realistic 
topologies for simulation experiments. We compare two the- 
oretical models of growing networks with the present rea6 
datu uf Cnritellu network. 

1 Introduction 
In the past several years, Peer-to-Peer (P2P) networks 

have emerged as effective ways for communication and 
coopcration among geographically distributed computers. 
P2P systems are often built at the application level and use 
their own communication protocols to form a virtual net- 
work over the underlying physical network. The topology 
of the virtual network shares some common properties of 
complex networks in other disciplines of science, and has 
a significant impact on performance, scalability and robust- 
ness of P2P systems. 

Recently, a large proportion of research effort has been 
devoted to the study and modeling of a wide range of nat- 
ural systems that can be regarded as networks, focusing on 
large scale statistical properties of networks other than sin- 
gle small networks. Some reviews on complex networks can 
he found 15, 11). From biology to social science to com- 
puter science, systems such as the Internet [9], the World- 
Wide-Web [XI, social communities, food chain and biolog- 
ical networks can be represented as graphs, where nodes 
represent individuals and links represent interactions among 
them. Despite this simple definition, these networks often 
exhibit high degree of complexity due to the wiring entan- 
glement during their growth. Researches on these networks 
havc revealed some commonalities. Many of these networks 
have complex topological properties and dynamical features 
that can not be explained by the classical graph model of 
random networks, the Erdos-Renyi model [7]. 

The advances in P2P systems and other complex net- 
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works have motivated us to carry out an intensive study of 
the topology of existing P2P networks, which will provide 
insight into the nature of underlying system, help us design 
high performance algorithms according to such topologies 
and generate rcalistic topologies in  simulation expcriments. 

In our study, we choose Gnutclla as our testbed, due to its 
large user community and open architecture. Somc previous 
works have been done on the measurement and analysis of 
Gnutella network [2, 12, 13, 141, but most of them focused 
on other topics such as user behavior [ 2 ] ,  bottleneck hand- 
width [ 131 and search algorithms [ I]. In this paper, we put a 
strong emphasis on the study of topological properties and 
the modcl of these properties. 

The rest of this paper is organized as follows. Section 
2 describes Gnutella protocol and crawler implementation 
used to discover the topology of Gnutella network. In sec- 
tion 3, we analyze the statistical distributions of Gnutclla 
topology. Section 4 is devoted to a detail discussion of some 
complex nctwork models compared with the real data anal- 
ysis. Finally, section 5 ends with our conclusions and future 
works. 

2 Gnutella Protocol and Data Collec- 
tion 

As mentioned in the original Gnutella protocol, individ- 
ual nodes, also called servents perform tasks normally as- 
sociated with both clients and servers. They provide client- 
side interfaces through which users can issue queries and 
view search results. At the same time, they also accept 
queries from other servents and response with applicable 
results. 

Originally, all Gnutella peers connected with each other 
randomly, which caused scalability problem in Gnutella net- 
work. The ultrapeer system has been found an effective way 
for solving that problem. The scheme organizes the net- 
work in a more structured form. All peers are categorized 
as leaves and ultrapeers. A leaf keeps only a small num- 
ber of connections to ultrapeers. An ultrapeer behaves as a 
proxy for the leaves connected to it. 

We have developed a crawler to collect topology infor- 
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mation of Gnutella network. According to Gnutella proto- 
col, a ping message with lTL=2 and HOP=O is regarded as 
a crawler ping, and peers, upon receiving a crawler ping, 
would respond with appropriate pong messages. Based on 
this mechanism, it is possible to discover Gnutella topol- 
ogy by performing a breadth first searching on the network. 
From our experience and observations, we find that some 
clients such as Gnucleus, Morpheus (based on GnucDNA) 
do not respond the crawler ping appropriately. Fortunately, 
these clients send an information page summarizing ser- 
vents' status to any web browser trying to connect to it. Mo- 
tivated by this, we also developed a web spider as a means of 
collecting topology information from these clients, and in- 
tegrated the web spider into the crawler, which accelerated 
the crawling process remarkably. The crawler were writ- 
ten in Java based on limewire's [ 161 open source client, and 
ran in parallel using 40 threads. Our crawler can discover 
more than 50,000 peers within half an hour, which corre- 
sponds to 50% of the total number OF peers in the system at 
any time according to the statistical information reported by 
limewire. 

3 Topological Properties 

In this paper, we use three data sets (collected by our 
crawler) referenced as V34206, V48134 and V57926 re- 
spectively, where the figures represent the number of peers 
discovered during each crawling. 

3.1 Small-world and Power-law 
Two fundamental topological properties of complex nct- 

works are the average shortest path length and the network 
diameter. We define 1 to be the average shortest path length 
between vertex pairs in a network 

where d i j  is the shortest path length from node i to node 
j .  Similarly, the network diameter d is defined as the largest 
among the shortest paths between any node pairs, i.e. d i j ,  in 
the network. Many natural networks show surprising small- 
world effect, i.e. one can go from a node to any other node 
in the network only through a small number of intermediate 
nodes averagely. In these networks, the network diameter 
grows logarithmically with the size n of the network. In 
Table I ,  we give some statistics obtained from our data set 
and previous work [ 141 about diameter and average shortest 
distance of Gnutella network. 

In Table 1, the left-hand side is the results computed 
using our data sets, and the right-hand side is the results 
presented in [14]. As shown in the table, all snapshots 
of Gnutella network show small world phenomenon with 
small average shortest distance and small diameter. These 

Table 1: Basic statistics of Gnutella network. (Properties 
measured are: total number of nodes N ;  total number of 
edges E; average shortest distance I ;  diameter d; average 
degree k .  Blank entries indicate unavailable data.) 

N 1 34206 48134 57926 I 992 1008 1007 
E I43958 64408 80276 I 2465 1782 4094 
1 1 5.4 5.6 5.8 I 3.7 4.4 3.3 

k I 2.57 2.72 2.83 I 
d 1 16 15 15 I 9 12 IO  
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Figure I :  Distribution of the shortest path length for three 
data sets. 

results indicate strong small world properties of the topol- 
ogy of Gnutella network. Both the diameter and the av- 
erage shortest distance increase compared with previous 
measurements, that is due to the increasing of the size of 
the whole network. Furthermore, the network still remains 
small world property compared with the large size of the 
network. The distribution p ( 1 )  of shortest distances of 1 be- 
tween pairs of peers is shown in Figure l .  The distribution 
is characterized by several peaks around its average value, 
and its shape remains unchanged from V34206 to V57926 
data sets, which also identifies the small average shortest 
distances. 

Another common feature of many complex networks is 
the property of clustering. In these networks, if node A is 
connected to B and C ,  B is likely connected to C. The clus- 
tering can be quantified by clustering coefficient, which is 
defined as the ratio between the number of edges E, among 
the k, neighbors of a given node i and its maximum possible 
value k,(k, - 1)/2, i.e. 

The clustering coefficient of the whole network (C) is 
the average of C, over all nodes in the network. It pro- 
vides a measurement of how well the neighbors of a node 
are locally interconnected.The maximum value of (C) is I ,  
corresponding to a fully connected network. 

In Figure 2, we plot the distribution of ( C ) k  as a func- 
tion of the node degree k for the three data sets. As shown in 
Figure 2, we can not find obvious evidence for a power-law 
behavior of this distribution. But some useful information 
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Figure 2: Log-log plot of clustering coefficient as a function 
of the node degree for three data sets. 

can be obtained from analyzing the clustcring coefficient C I .  

as a function of the node degree k.  According to this mea- 
surement, we see that the clustering cocfkient C I .  follows 
an evident decay with the increasing of the node degree k, 
which indicates that nodes with small degree have larger lo- 
cal clustering coefficient than thosc with large degree. Low 
degrec nodcs form well connected local subgaph by con- 
necting to high degree nodes (called hubs), and at the same 
time local subgraphs are connected to each other by hubs. 
That fits into the pattern in Gnutella network, where leaves 
(having small degree) are always connected to several ultra- 
peers (hubs) with each ultrapeer connecting to several other 
ultrapeers. 

The degree of a node in a network is the number of edges 
connected to that node. Some important information about 
a network can be extracted from its degree distribution p ( k ) ,  
which is the fraction of nodes that have degree k.  The de- 
gree distribution of random graphs obeys binomial distrihu- 
tion, or Possion distribution with apeak atp((k)). However, 
the degree distribution of many real networks always has a 
power-law tail 11 I ]  

p ( k )  - IC-7 (3) 

We also use cumulative probability distribution to ex- 
press the probability that a node has degree larger than or 
equal to k. The degree distribution is presented as: 

k'=k 

It has the advantage of being less noisy than the original 
distribution. Cumulative distributions also have power-law 
tails, hut with exponent y - 1 rather than y. 

In Figure 3, we plot the cumulative probability distribu- 
tion of the node degree corresponding to three data sets on a 
log-log scale, and use a linear regression to fit a line for the 
plot. As shown in Figure 3, i t  is obvious that the plots of all 
data sets follow power-law distributions with slope close to 
-1.0, yielding a degree exponent y = 2.0, which is in good 
agreement withprevious results [l]. The average degree of 
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Figure 3: Log-log plot of degree vs. cumulative degree 
distribution for three data sets. The power-law behavior is 
characterized by a slope -1.0, which yields a degree expo- 
nent y = 2.0. 

the network is shown in Table 1, which indicates that most 
pecrs (leaves) keep only a small number of connections ex- 
cept for ultrapeers. 

3.2 Centrality 
One of the most important measurements in network 

analysis is to identify the most 'central' or 'influential' 
nodes in a network. To locate these central nodes is to eval- 
uate the centralities [IO] of these nodes. Measuring of cen- 
trality can he defined in two different ways: node centrality 
(one value per node) and network centralization (one value 
for the whole network). This three cases correspond to three 
centrality measurementsdegree centrality, closeness cen- 
trality, and betweenness centrality. Their formal definitions 
are as follows. 

(1). Degree centrality is define as the ratio between the 
degree of a node and the highest possible degree. 

where N is the number of nodes in a network. 
(2 ) .  Closeness centrality is defined as 

where d(z, y) is the shortest path length between nodex and 
y, U is the set of all nodes. 

(3). Betweenness centrality is defined as 

(7) 

where n z ( y ,  z )  is the number of the shortest paths running 
through node x, and n(y, z )  is the number of the shortest 
paths between node y and z. 

(4). Freeman [ 101 defined general network centralization 
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where C; is the highest value of selected node centrality 
Cn(z) in the set of nodes of a network. 

Network centralization is a number between 0 and 1. The 
value 0 indicates that if all nodes have equal centrality (ring 
topology), and I if one node completely dominates all other 
nodes (star topology). There are also three measurements 
about network centralization according to the three defini- 
tions of node centrality. 

Figure 4 A sample network. 

Figure 4 shows a simple network. In this network, AI 
has the most conncctions, making it the most 'cental' node 
in the network with the highest dcgree centrality. AI  cor- 
responds to the ultrapeer in Gnutella network that connects 
to a large number of leaves. Ultrapeers are always more 
active in routing ping and query messages. The failures o f  
these nodes have a negative impact on the performance of 
the whole network. 

Although A3 and A5 have fcwer connections than AI,  
their locations in the network allow them to communicate 
with all the nodes more quickly than any others. They are 
close to everyone else with higher closeness centrality. One 
property strongly correlated with closeness centrality is the 
average shortest path length. A network with more short 
paths is more efficient in transferring data, and more flexible 
with the change of the network topology. Hence, in a P2P 
network, maximizing the closeness centrality of all nodes 
will decrease the average path length and improve the per- 
formance of communication among nodes correspondingly. 

As shown in Figure 4, A6 has fewer connections than 
A I ,  A3, and A5 (also fewer than the average degree), but 
it is located at such an important point that many commu- 
nication paths in the network must across it. It acts as an 
agent between two communities, and plays a central role in 
the network with larger betweenness centrality. Intended at- 
tacks on such node would break down the functionality of 
the whole network. 

As centralities of individual nodes provide position infor- 
mation about these nodes in the network, the network cen- 
tralization obtained from individual centralities can reveal 
much about the overall topology of the network. A very 
centralized network is controlled by one or a few central 
nodes, and networks of this type characterizing with.larger 
network centralization values are vulnerable by removing 
the central nodes. However, networks with low centraliza- 
tion values, such as those decentralized P2P networks, are 
always resilient under random failures of nodes. In next 
section, we will present a detail study about the resilience 
of Gnutella network. 

Id, . , 

Figure 5 :  Log-log plot of betweenness distribution as a 
function of node degree for data set V34206. 

From the above analysis about centrality, we see that cen- 
tralities have great impact on optimizing topologies of net- 
works. In the following, we give our measurements about 
centrality in Gnutella network. 

Table 2: Network centralization of Gnutella network 

N I 34206 48134 57926 
E I 43958 64408 80276 

degree I 0.01177 0.00844 0.007 
closeness I 0.16742 0.18938 0.19221 

betweenness I 0.05131 0.04256 0.02634 

Three measurements of network centralization are shown 
in Table 2. The small values in Table 2 imply that Gnutella 
network is not dominated by one or a few central nodes, 
hence it is fault tolerant under random failures of nodes. 
Figure 5 and Figure 6 depict the distributions of between- 
ness and closeness as a function of node degree respectivcly. 
As shown in Figure 5 ,  there are also some nodes with low 
degrees having high values of betweenness centrality, which 
indicates that attacks on such low degree nodes would also 
influence the performance of the whole network compared 
with attacks on high degree nodes as described earlier. Fur- 
thermore, nodes with large degree (with fewer vertically 
plotted scatters ) obviously have large values of between- 
ness centrality because they are often more active or cen- 
tral than others. Figure 6 shows that closeness centrality is 
distributed uniformly within the range [0.1, 0.21, which in 
another way illustrates the fact that all nodes with different 
degrees in the network can reach others easily. 

3.3 Network Resilience 

Recent interest about network resilience has been sparked 
by the work [ 3 ] ,  which studied the effect of random removal 
(called random failure) and intentional removal (called at- 
tack) of the nodes in networks. 

With the removing of nodes from a network, some paths 
between pairs of nodes is broken. The average length of 
these paths increases (the closeness centrality decreases 
accordingly). Eventually nodes are isolated in different 
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Figure 7: Results for random failures (open square), degree-based (star), and betweeness-based (filled square) attacks of 
nodes measured by the relative size of largest cluster S,  the closeness centralization C,, and diameter d as functions of thc 
fraction of removed nodes f in Gnutella network. Insct in (c) is magnification in the early stage of attack. 
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Figure 6: Log-log plot of closeness distribution as a func- 
tion of node degree for data set V34206. 

clusters (the network is fragmented into many small clus- 
ters), and communications between them becomes impossi- 
ble. Some real networks display high degree of robustness 
against random failures of nodes, but they are also very vul- 
nerable under attacks to the highest degree nodes. As de- 
scribed in the above section, betweenness centrality is an 
important concept that captures the prominence of a node 
in the network. Thus, it is natural to expect that removal 
of nodes with high betweenness centrality also degrades the 
functionality of networks. In this paper, we take into ac- 
count both degree and centrality to see how diEerently these 
two properties affect the network resilience of Cnutclla net- 
work. To explain the damages caused by attacks and ran- 
dom failures, we measure three parameters: the relative size 
of the largest clustcr S (defined as the ratio between the size 
of the largest cluster and the size of original network), the 
average closeness centrality C, (defined as the average of 
the closeness centralities of all nodes in the largest cluster) 
and network diameter d. 

Figure I summarizes the results for random failures 
(Failure), degree-based (DAttack) and betweeness-based 
(BAttack) attacks of nodes measured by S,  C, and d as func- 
tions of the fraction of removed nodesf. According to our 

observations, we find that the percentage of ultrapeers in  
Gnutella network is about 3.3%. Due to this, the fraction 
of removcd nodes f in simulating attacks is limited in the 
range [0,0.05]. 

As shown in Figure 7, Gnutella network shows high de- 
gree of tolerance against random failures. However. the 
fault tolerance comes at the expense of attack vulncrability: 
rapid increasing of the network diameter, rapid decreasing 
of the relative size of the largest cluster and the closeness 
ccntrality in  early stage. Both S and C, show threshold 
phenomenons: 5' = 0 when f > 0.022 and f > 0.032 
under DAttack and BAttack, respectively. C, reaches the 
lowest point when f = 0.01 and f = 0.028 under DAt- 
tack and BAttack, respectively. With the increasing of f ,  
C, decreases accordingly because the removal of some im- 
portant nodes lengthen the average path distance between 
node pairs. However, after some critical points, the largest 
cluster becomes much smaller than the initial size of the 
network, which causes the fallback of average path length 
in such clusters and the increasing of C, correspondingly. 
Specially, C, even exceeds the initial value when f reaches 
around 0.025. Another interesting characteristic shown in 
Figure 7 is that degree-based attacks affect the network 
topology more significantly than betweenness-based attacks 
(the curves change faster). The reason will be described in 
the next section, where we compare that with other two the- 
oretical models. In Figure 7(c), we only show the results 
of DAttack and BAttack in the inset in the range [0,0.01], 
which is sufficient to demonstrate the impact caused by at- 
tacks. 

4 Modeling P2P Networks 
In the above section, we presented a thorough study of 

the topology of Gnutella network. Applications running on 
top of a P2P network rely heavily on the topology of the net- 
work. Thus designing accurate network models of P2P net- 
work is of importance to simulate these applications on top 
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of P2P networks. First, we introduce three general models 
for complex networks. The models are defined as follows: 

ER (Erdos-Renyi) model: This model defines a ran- 
dom graph of n nodes with each pair of nodes being con- 
nected with probabilityp. The probability space of random 
graphs G ( n , p )  is a finite probability space whose elemen- 
tary events are all graphs on a fixed set of n nodes and 
where the probability of a graph with m edges is p ( G )  = 

BA (Barabasi-Albert) model: Two main features pre- 
sented by this model [6] are the growing nature of the net- 
work and a preferential attachment rule, in which the prob- 
ability of adding new connections to a given node grows 
linearly with its degree. The algorithm of BA model is de- 
scribed as follows: Staring with a small number (mol of 
nodes, at every step we add a new node with nr edges that 
link the new node to m diffcrent nodes already in the sys- 
tem. The probability that a new node is connected to node i 
depends on the degree ki of node i, such that 

p"(1 -p)(+, 

After n steps, we obtain a network with degree distribu- 
tion p k ( k )  - K3. 

EBA (Extended BA) Model: The Extended BA model 
[4] describes a more realistic description of network forma- 
tion by incorporating additional local events that are known 
to appear in  real networks. In this model, starting with mo 
isolated nodes, and at each step we perform one of the fol- 
lowing operations: 

( I ) .  Wirh probability p we add m(m 5 mo) new links. 
For each o f  these links, the starting point of a new link is 
selected randomly, and the other end of the link is selected 
with probability 

(2). With probability q we rewire m links. We randomly 
select a node i and a link l i j  connected to it, and then remove 
this link and replace it with a new link 1 .  .* that connects i 
with node j '  chosen with probability n ( k j )  given by (10). 
This process is repeated ni times. 

(3) .  With probability 1-p-q  we add a new node. The new 
node has m new links that with probability n ( k i )  are con- 
nected to node i already present in the system. Equation 
(10) leads to a power-law degree distribution with an expo- 
nent given by [4] 

l', 

+ I  (1  1) 
2m(l-  4)  + 1 - p  - q 

m y =  

Changing the values of m , p ,  and q, we get the desired de- 
gree distribution exponent y. In the simulations, we use the 
values m = 2, p = 0.3, and q = 0.54, which yield the 
exponent y = 2.0. 

io' 10' Id lo' 
k 

Figure 8: Log-log plot ofclustering coefficient as a function 
of the node degree for ER and EBA models. 

As described above, the BA model produces a power-law 
exponent y = 3.0, which does not accord with our result 
shown in Figure 3. However, EBA model is more Hexi- 
ble than BA model so that we can obtain desired power-law 
exponent by choosing different parameters. Thus, we per- 
form comparison among our empirical data, ER model and 
EBA model (although ER model does not show a power- 
law degree distribution, we still compare it with our results 
to see how different it behavcs against real networks). In 
ER model, we choose the probability p = 0.2. 

We perform simulations of the two models with parame- 
ters mentioned above and the number of nodes N = 30246 
according to the size of data set V30246. 

Table 3: Properties of the ER and EBA models, compared 
with the values of data set V34206. 

N I ER model I EBA model 1 V34206 
1 I 10.8 1 2.6 I 5.4 
d I 26 I 8 1 16 

closeness I 0.04 1 0.269 I 0.167 

In table 3, we report the values of average shortest path 
length, diameter, and closeness centralization for the two 
models, compared with the data set V34206. From the table, 
we find that the values of V34206 are all between those of 
ER and EBA models. The EBA model provides a too small 
value for the average shortest path length i, and the diameter 
of ER model is obviously much larger than the other two 
counterparts. 

In Figure 8, we plot clustering coefficient as a function of 
node degree of the two models. For ER model, C k  does not 
exhibit a strong dependency with the degree k .  However, 
for EBA model, it is similar to Gnutella network (shown 
in Figure 2) that C k  follows an evident decay with the in- 
creasing of the node degree k except for a little more slower 
decaying speed. 

In Figure 9, we plot the degree distributions of the two 
models. Obviously, the degree distribution of ER model 
does not show a power-law tail. On the other hand, a power- 
law distribution of EBA model is characterized by the expo- 
nent y = 3.0 in the figure. The exponent in EBA model is 
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Fi-rmre 9 Log-log plot of degree vs cnmnlativc degree dis- 
tribution for ER and EBA models. 
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Figure 10 Betweenness distlibution as a function of node 
degree for ER model. 

not in good agreement with our data sets that have a smaller 
value y = 2.0 (Figure 2). 

We show respectively in Figure 10 and 11 the node bt- 
tweenness versus the node degree of ER and EBA models. 
In ER model, despite the absence of high degree nodes, cor- 
relations between betweenness and degree are still evident 
for ER model with an exponential cut-off in the distribu- 
tion. The EBA model shows similar behavior as compared 
with Gnutella network. In both EBA model and Gnutella, 
low degree nodes have large values of betweenness, differ- 
ing from ER model, where low degree nodes always have 
smaller values of belweenness than high degree ones. 

The distribution of closeness against node degrees of ER 
and EBA models (plotted in F i y r e  12) has analogical char- 
acteristic with Gnutella network (Figure 6) except for the 
relatively smaller region of distribution of ER model. 

In analogy with Gnutella network, in Figure 13, mea- 
surements are plotted with the same parameters as used in 
Fignre 7. The figures (a), (b) and (c) in Figure 13 are the 
measurements ahout ER model, and (d), (e) and (f) illus- 
trate EBA model. As shown in the figure, the response of 
EBA model under failures and attacks is similar to Gnutella 
network, except for larger values of critical point, such as in 
Figure 13(d), S N 0 when f > 0.24 and f > 0.22, and in 
Figure 13(e),C, reaches 'the lowest point when f = 0.11 

Figure 11: Log-log plot of betweenness distribution as a 
function of node degree for EBA model. 

lo' 10' ib lo' 
k 

Figure 12: Log-log plot of closeness distribution as a func- 
tion of node degree for ER and EBA models. 

and f : 0.09 under Mt tack  and BAttack, respectively. 
These values are all larger than the counterparts in Figure 7. 
However, the response of ER model to failures and attacks 
is rather different. Failures and attacks have almost equal 
impact on the network structure (the overlapping curves as 
shown in Figure 13 (a),(b),(c)), since all nodes in ER model 
have approximately the same number of connections. Com- 
paring (b) and (e), (a) and (d) in F i s r e  13, we find that the 
response to attacks in EBA modcl is faster than the response 
in ER model: with smaller critical points than those for ER 
model. The insets in Figure 13 are ma,pifications in the 
early stages of attacks, which are plotted using comparable 
range of z arris with Figure 7. As shown in these insets, 
all cnrves decay much slower than those plotted in Figure 7 
within the same interval. A remained problem in the prev- 
ous section is that the response to degreebased attack and 
betwecnness-based attack in Gnutella network is much dif- 
ferent from those in ER and EBA models. In ER and BBA 
models, betweenness-based attacks are more harmful than 
degree-based attacks (curves change faster), while it is con- 
trary in Gnutella network. The main reason for this discrep- 
ancy is that in Gnutella network, leaf peers are most de- 
pendent on nltrapeers, which causes the formation of many 
structured subgraphs in the network, and these subgraphs at 
last compose a more structured topology,of the whole net- 
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Figure 13: Results for random failures (open square), degree-based (star) and betweeness-based (filled square) attacks of 
nodes measured by the relative size of largest cluster S, the closeness centralization C, and diameter d as functions of the 
fraction of removed nodes f in ER and EBA models. Insets are magnifications in the early stage of attack. 

work 

5 Conclusions 
In this paper, we have introduced some topological prop- 

erties of Gnutella network. The investigation about these 
properties is of great importance to the applications running 
on top of it. We have shown that Gnutella network exhibits 
small-world effect and power-law degree distribution. Fur- 
thermore, centrality and network resilience are also studied 
in detail. The results of comparison between Gnutella net- 
work and theoretical models show that the understanding of 
P2P network still need more real data analysis and theoreti- 
et1 modeling. 
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