
1045-9219 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TPDS.2016.2611659, IEEE
Transactions on Parallel and Distributed Systems

1

Optimizing Graph Processing on GPUs
Wenyong Zhong, Jianhua Sun, Hao Chen, Jun Xiao, Zhiwen Chen, Cheng Chang, and Xuanhua Shi

Abstract—Distributed vertex-centric model has been recently proposed for large-scale graph processing. Due to the simple but
efficient programming abstraction, similar graph computing frameworks based on GPUs are gaining more and more attention. However,
prior works of GPU-based graph processing suffer from load imbalance and irregular memory access because of the inherent
characteristics of graph applications. In this paper, we propose a generalized graph computing framework for GPUs to simplify existing
models but with higher performance. In particular, two novel algorithmic optimizations, lightweight approximate sorting and data layout
transformation, are proposed to tackle the performance issues of current systems. With extensive experimental evaluation under a wide
range of real world and synthetic workloads, we show that our system can achieve 1.6x to 4.5x speedups over the state-of-the-art.

Index Terms—GPGPU, Graph Computing, Pregel, Bulk Synchronous Model, Load Imbalance.

F

1 INTRODUCTION

With the rapid development of the Internet, processing very
large web graphs has become a hot research issue in both
the academia and industry. Large-scale graph processing
frameworks are becoming increasingly important for solv-
ing problems in scientific computing, data mining, and other
domains such as social networks. For example, finding the
shortest paths of on-line maps, the citation relationships
among twitter forwarding, and the purchasing preference in
E-commerce webs, are all typical scenarios that heavily rely
on efficient graph computation. However, developing graph
processing algorithms over large dataset is challenging in
terms of programmability and performance. Thus, a general
graph programming framework that provides supports for
high performance processing of a wide range of graph
algorithms is often desired.

As a result, in the last several years, we have witnessed
a growing interest in distributed graph processing, such as
Pregel, GraphLab, PowerGraph, GPS, and Mizan, which are
purposely-built distributed graph computing systems with
easy-to-use programming interfaces and reasonable perfor-
mance under large-scale workloads. The prominent one is
Pregel [24], which was firstly proposed in 2010 as a pro-
gramming model to address the challenges in parallel com-
puting of large graphs. The high-level programming model
of Pregel plays a significant role in abstracting architectural
details of parallel computing from programmers. Specifi-
cally, the vertex-centric programming model proposed by
Pregel greatly relieves the efforts of performing computation
on large-scale data-intensive graphs, and provides high
expressibility for a wide range of graph algorithms. Similar
to MapReduce [13] whose programming model has been

• Wenyong Zhong, Jianhua Sun, Hao Chen, Jun Xiao, Zhiwen Chen,
Chang Cheng are with College of Computer Science and Elec-
tronic Engineering, Hunan University, Changsha, China. E-mail:
{hnuzwy,jhsun,haochen}@hnu.edu.cn.

• Xuanhua Shi is with School of Computers, Huazhong University of
Science and Technology, Wuhan, China. E-mail: {xhshi}@hust.edu.cn

adopted successfully in many mainstream parallel environ-
ments, the advantages of Pregel have inspired the research
of applying the Pregel-like graph computing model to many
parallel architectures (e.g. multi-core, GPU, and heteroge-
neous hybrid systems), such as Grace [27], Medusa [37], and
TOTEM [15].

With the advancement of GPU hardware and the in-
troduction of GPU programming frameworks such as
CUDA [5] and OpenCL [25], GPU has become a more gen-
eralized computing device. General purpose computing on
GPU (GPGPU) has found its way into many fields as diverse
as biology, linear algebra, cryptography, image processing,
and so on, given the tremendous computational power pro-
vided by GPUs such as massive parallel threads and high
memory bandwidth as compared to CPUs. In parallel to this
trend, GPUs are increasingly leveraged to accelerate graph
algorithms with either GPU-specific optimizations [18] or
Pregel-like programming interfaces to hide the hardware
intricacies [37], [7], [35], [29]. However, it is still challenging
to design a GPU-based graph computing system that can
exploit the hardware characteristics of GPUs efficiently, and
provide a flexible user interface at the same time.

Existing graph processing systems mainly use the Com-
pressed Sparse Row (CSR) representation of graphs due to
its compact storage requirement. However, the low stor-
age space consumption comes at a cost of non-coalesced
access to GPU memory because of poor memory access
locality. CuSha [7] is a graph processing framework that
enables users to write vertex-centric algorithms on GPU,
proposing a new graph representation called G-Shards to
minimize non-coalesced memory accesses. However, this
representation is not space efficient, which may exacerbate
the situation when more GPU memory is needed to process
large graphs. Medusa [37] is a general purpose GPU-based
graph processing framework that provides high-level APIs
for easy programming and scales to multiple GPUs. The
achievable performance of Medusa may be limited by its
internal data organization and processing logic that result
in both irregular memory access and imbalanced workload
distribution among GPU threads. [18] proposes techniques
such as deferring outliers and dynamic workload distri-

1045-9219 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TPDS.2016.2611659, IEEE
Transactions on Parallel and Distributed Systems

2

bution to alleviate intra-warp divergence and achieve a
balanced load among different warps. However, the im-
provement in performance is limited because of its relatively
heavyweight implementation.

In this paper, we present a general graph processing
framework for GPUs, and our goal is to provide a sim-
pler programming model without any performance loss
and expressibility reduction. In particular, two novel al-
gorithmic optimizations, lightweight approximate sorting
and data layout transformation, are proposed to tackle the
performance issues in existing frameworks. The approxi-
mate sorting can efficiently alleviate load imbalance on the
GPU due to non-uniform degree distribution in graphs.
The data layout transformation is effective in optimizing
memory representation of key data structures to coalesce
memory access. We believe that the proposed optimizations
are not tightly-coupled to our system, and applicable to
other similar frameworks.

The main contributions of this paper include:

• In order to exploit the fine-grained parallelism on
GPUs, we present a general graph computing frame-
work using a customized Edge-Vertex program-
ming model instead of the traditional vertex-centric
model. Compared with existing GPU-based frame-
works such as Medusa that employs a more complex
programming model, our system offers a simpler
interface without the reduction of performance. We
strike a balance between the programming simplicity
and the exploitation of performance on GPUs.

• We recognize that load imbalance among GPU
threads in existing graph processing systems has
important implications on performance. So, we in-
troduce an efficient approach called approximate sort-
ing to address this issue, which greatly alleviates
imbalance at minimal cost. In addition, we observe
that key data structures in GPU-based graph systems
may suffer from severe non-coalesced memory ac-
cesses, which significantly hinders scalability. Thus,
we propose a lightweight algorithm to transform the
original row-major layout to column-major layout to
mitigates non-coalesced access patterns.

• We conduct extensive performance evaluations on a
set of representative graph datasets that include both
real world power-law graphs and synthesized ran-
dom graphs, and the results indicate that our system
outperforms an existing graph processing system.

2 BACKGROUND

In this section, we present the necessary background on the
Pregel programming model and GPU architecture.

2.1 Pregel Programming Model
The Pregel programming model is inspired by the Bulk Syn-
chronous Parallel model [34]. In this model, programmers
express the parallelism of graph computation by a sequence
of iterations called supersteps. During each superstep, the
framework invokes an user-defined function for each vertex
in parallel. Inside this function, the vertices receive its in-
coming messages from other vertices in the prior superstep,

then the vertices update their values and send messages to
other vertices that will be used in the next superstep [28].
Although simple, the Pregel programming model is flexible
to express many graph algorithms.

Several variants of the Pregel programming model were
also proposed such as some open-source implementations
Hama [2], Giraph [1] and GPS [28], which target distributed
environments. At the same time, efforts are devoted to
extending the original Pregel model in order to optimize the
performance for other parallel architectures. For example,
Medusa [37] is an efficient implementation of applying the
Pregel model to GPU platforms, with some distinguish-
able features to accommodate the inherent characteristics of
GPUs.

Medusa provides a more fine-grained programming in-
terface than Pregel, exposing fine-grained data parallelism
on edges, vertices and messages, which is called EMV
model. This model enhances the vertex-centric model to
provide support for efficient graph processing on GPUs.
Using the APIs offered by Medusa, programmers can define
computations on vertices, edges and messages respectively.
However, the EMV model is still complicated for program-
mers compared with the vertex-centric interface. Although
Medusa processes edges, vertices, and messages separately
with different GPU kernels to exploit GPU parallelism, load
imbalance among GPU threads within warps/thread blocks
still exists, leading to GPU resource underutilization.

Medusa proposes a graph-aware buffer scheme for the
message buffer. In the EMV model, messages are usually
sent or received along the edge. Therefore, an edge can send
one or more messages to the message buffer. The size of
the message buffer is pre-defined according to the number
of edges in the graph and the maximum messages that an
edge will send. The locations to store messages on GPU
are established on CPU by constructing a reverse graph.
As a result, the write positions of messages sent to the
same vertex are consecutive. However, when vertices read
messages from the message buffer, the threads in a warp
would read the randomly scattered messages in the global
memory, violating the requirement of coalesced memory
access.

2.2 GPU and CUDA Programming Framework

The current generation of GPUs have thousands of process-
ing cores that can be used for general-purpose computing.
For example, the Kepler GPU GTX780 consists of 12 Stream-
ing Multiprocessors (SMXs), each equipped with up to 192
Stream Processors (SPs). Each SMX has 64 KB of onchip
memory that can be configured as 48 KB of shared memory
with 16 KB of L1 cache, or as 16 KB of shared memory with
48 KB of L1 cache, and 1536 KB L2 cache is shared by all
SMXs. In addition to the L1 cache, Kepler introduces a 48
KB read-only data cache. Each SMX has 64 KB 32bit registers
equally split to the threads running in one block. In contrast,
the off-chip global memory has a much larger size (typically
in GB range) and longer access latency.

The schedulable execution unit on the GPU is called a
warp formed by a group of 32 threads. Warps are grouped
together into cooperative thread arrays (CTAs), which are
correspondingly structured as a grid. Typically, the threads

1045-9219 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TPDS.2016.2611659, IEEE
Transactions on Parallel and Distributed Systems

3

in a warp follow the same execution path and operate on
distinct data in SIMT (Single Instruction Multiple Threads)
fashion in order to achieve maximal parallelism. Warp di-
vergence may occur when there are conditional branches
taken on the execution path. Launching a large number of
threads concurrently is a recommended way to hide the
latency of global memory access and to better utilize the
computational resources on the GPU.

CUDA (Compute Unified Device Architecture) is a
GPGPU programming framework from NVIDIA. CUDA
supports various memory spaces, such as register, constant,
local, parameter, texture, shared, and global memory, which
differ in size, addressability, access speed and access per-
missions. Perhaps the single most important performance
consideration in programming for GPU architectures is the
coalesced access to the global memory [5].

3 SYSTEM DESIGN

Our system is composed of two major parts: the Pregel-like
high-level programming interface and the customized run-
time for the GPU. The programming interface can simplify
the programming task of using GPUs for graph computa-
tion. The runtime system can hide GPU hardware intricacies
and specific optimizations. In this section, we first explain
why existing graph computing models are not sufficient
and propose the Edge-Vertex model. Then, we describe the
workflow and APIs of our system. At last, we analyze the
potential performance bottleneck of the proposed comput-
ing model.

3.1 Edge-Vertex Model

First, we describe the reason why the vertex-centric model
can not fit in the GPU architecture directly. In the vertex-
centric model, the developer needs to define a function (e.g.,
compute) to perform computations on individual vertices
(such as sending or receiving messages along edges). In
order to fully utilize the computational resource of GPUs,
we need to map the function to each GPU thread to ex-
ploit the fine-grained parallelism of GPUs. However, real
world graphs often exhibit power-law degree distribution,
which indicates that the workload assigned to each GPU
thread may be imbalanced, leading to suboptimal perfor-
mance. To address this issue, the EMV model proposed in
Medusa splits the computation into multiple components,
separating the processing of vertex, edge, and message to
offer the developer more flexibility in designing algorithmic
optimizations. However, this benefit comes at the cost of
incurring programming complexity such as exposing the
structure of the message buffer to allow explicit manage-
ment of messages. However, the expressibility of defining
GPU-based computation on vertices and edges would be
sufficient for most graph algorithms. Further, encapsulating
the message buffer in the runtime system can not only
reduce programming complexity but also provide the op-
portunity of implementing optimizations for different GPU
hardware architectures.

Therefore, we partition the computation in the vertex-
centric model into two methods such as EdgeCompute and
VertexCompute, which we call the Edge-Vertex model. It is

based on the consideration that in our model edges are
responsible for sending messages to the message buffer
and vertices conduct the real computation with the mes-
sages received from the buffer. In other words, how the
message buffer is constructed and managed is invisible to
the end user, striking a balance between the flexibility in
optimizing certain graph algorithms and the complexity in
writing graph applications. Furthermore, this simplification
does not necessarily imply performance reduction because
specifically designed optimizations can greatly improve the
overall performance as will be shown in this paper.

3.2 Workflow and APIs

Figure 1 illustrates the workflow of our system. At first,
the runtime system constructs the CSR representation [17]
for the input graph data, and common management tasks
including memory allocation on the CPU and GPU and
data transfer between the host memory and GPU are also
automatically fulfilled by the runtime system.

Input Data

 Preprocessing

Edge
Compute

Edge
 Compute

...
…

Message Buffer

…

Vertex
Compute

Vertex
Compute

…

…

Continue or not

Output Result

one
superstep

Sending
messages

Receiving
messages

active
vertices

 exist
 or

supersteps
not reach

to the
Certain

 number

CSR representation

Fig. 1: The workflow of our system

3.2.1 Preprocessing
In our system, the preprocessing stage is managed by the
runtime and is transparent to users. The internal message
management module is an array-based buffer with asso-
ciated operations of manipulating message delivery and
reception. Before the actual graph processing, we first need
to establish the accurate size for the chunked message
buffer with each chunk representing the storage space for
messages belonging to certain vertices. In particular, for a
chunk of the message buffer that is assigned to a specific
vertex, we need to calculate the positions where an edge can
send messages to and a vertex can receive messages from

1045-9219 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TPDS.2016.2611659, IEEE
Transactions on Parallel and Distributed Systems

4

in advance. The details will be given in section 4.2 when
discussing the optimizations against the message buffering
mechanism.

3.2.2 EdgeCompute stage
In the EdgeCompute stage, each GPU thread is responsible
for one or more edges associated with a vertex and performs
the operations of the following steps in order. First, the value
and state of the source vertex are read. Second, the weight
of the edge is obtained. Third, messages are delivered to
destination vertices based on the results evaluated based on
the vertex value and edge weight. Like the vertex-centric
model, the state of each vertex is active at start, and the
programmer can determine whether to vote to halt or not
explicitly according to the algorithm’s semantics.

3.2.3 VertexCompute stage
In the VertexCompute stage, one or more vertices are assigned
to a GPU thread that takes the following three steps similar
to the EdgeCompute stage. First, messages sent to the vertex
are retrieved from the message buffer by the GPU thread.
Second, the newly-obtained messages are used to compute
the values for the vertex and its outgoing edges. Third,
new state or value can be set to the vertex if needed. The
invocation of the functions EdgeCompute and VertexCompute
proceeds as a sequence of iterations until no active vertex
exists or the pre-defined maximum number of supersteps
are reached.

3.2.4 Message buffer
The message buffer is organized based on the total number
of messages and the maximum number of messages each
vertex can receive. Each edge is assigned a unique ID that
is used as the index into the message buffer for both the
stages. The ID values for the in-edges of a destination vertex
are consecutive, which guarantees that messages sent to
the same vertex are located contiguously in memory. Thus,
the combiner in the VertexCompute stage can process the
messages using a simple loop. This design together with
the layout remapping discussed in Section 4.2 can greatly
improve the overall performance.

3.2.5 Pregel-style API
In each superstep, each edge and vertex invoke the Edge-
Compute and VertexCompute method provided by the user
until certain conditions are met. The APIs we provide are
shown in Table 1 with brief descriptions. Similar to existing
frameworks, we divide the API into two categories: the user-
implemented APIs and the system-provided APIs.

As for the user-implemented APIs, initData must be
called to initialize data and configure parameters for threads
and blocks on the GPU. As discussed earlier, programmers
can define the computation with two separate functions
EdgeCompute and VertexCompute. System-provided APIs are
used as library calls to hide the GPU-specific programming
details. Our system offers the method startGPU to invoke
the device code, which in turn calls the corresponding user-
defined functions. Two versions of startGPU are provided to
control the iteration in different ways. One can be invoked
with an explicit parameter setting the maximum supersteps,

TABLE 1: Pregel-style APIs

user-implemented APIs
/* EdgeCompute function, processing one edge. */
void EdgeCompute(Edge e);
/* VertexCompute function, processing one vertex. */
void VertexCompute(Vertex v);
/* Initialize the value of edges and vertices, configure the
number of threads and blocks on GPUs. */
void initData(void* graph,void* initalValues);
system-provided APIs
/* Start the runtime system, and stop until reaching max-
Supersteps specified by the programmer. */
void startGPU(int maxSupersteps);
/* Start the runtime system, and stop until no active
vertices exist. */
void startGPU();
/* Set the state of the vertex to inactive. */
void voteToHalt(Vertex v);
/* Set the state of the vertex to active. */
voteToActive(Vertex v);
/* Set the parameter continue to true, if there are still active
vertices sending messages in the next superstep. */
void stillContinueNextSupersteps(bool continue);
/* Combine the incoming messages sent to the same
vertex. */
Message Combiner(Vertex v);

and the other can determine the completion of computation
by checking whether there will be active vertex in the next
superstep.

3.2.6 A Running Example
In graph algorithms, finding the single source shortest paths
(SSSP) in a graph is a well-known and easy-to-understand
graph algorithm [12]. For this graph algorithm, we need
to specify a vertex as the single source vertex and find a
shortest path between the source vertex and every other
vertex in the graph. We use a running example to illustrate
how the three major functions EdgeCompute,VertexCompute,
and Combiner are defined to implement the SSSP algorithm
in our system. Algorithm 1 shows the expressibility and
simplicity of the Edge-Vertex model in writing graph algo-
rithms for GPUs.

The SSSP procedure works as follows. In each iteration,
we first get the source node of each edge, and send messages
to sink nodes if the source node is updated in the previous
iteration. Then, in the vertex compute stage, the minimum
value is calculated by scanning a segment of the message
buffer that belongs to the current vertex. If it is less than the
value from the previous iteration, the old value is updated
with the new one, and the vertex votes to continue to the
next step. Otherwise, the vertex deactivates itself by voting
to halt. The whole procedure terminates when all vertices
are simultaneously inactive.

3.3 Performance Bottleneck Analysis
Although our Edge-Vertex model can guarantee a balanced
load distribution among GPU threads in the EdgeCompute
stage because of the coalesced memory access ensured
by the predetermined write positions, load imbalance still
exists in the VertexCompute stage. For example, in the Ver-
texCompute method of the SSSP algorithm, we need to
combine messages belonging to a vertex. But the number of
messages that a vertex receives may vary significantly due

1045-9219 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TPDS.2016.2611659, IEEE
Transactions on Parallel and Distributed Systems

5

Algorithm 1 The pseudo code of the SSSP algorithm

void EdgeCompute(Edge e)
1: Vertex srcVertex=e.getSrcVertex();
2: if srcV ertex.active then
3: e.sendMsg(srcVertex.value+e.weight);
4: end if
- -

void VertexCompute(Vertex v)
1: msg min=Combiner(v);
2: if msg min < v.value then
3: vertex.value=msg min;
4: voteToActive(v);
5: stillContinueNextSuperstep(true);
6: else
7: voteToHalt(v);
8: end if
- -

typedef: Message int
Message Combiner(Vertex v)

1: min=INF;
2: for each i ∈ v.inEdgesNum do
3: if min > v.currentMsg() then
4: min=v.currentMsg();
5: end if
6: v.nextMsg();
7: end for
8: return min;

to highly variable distribution of vertex degree in a graph,
which causes not only divergence within a warp but also
resource underutilization among blocks. In section 4.1, we
propose a lightweight but effective optimization mechanism
to address this issue.

Another potential performance bottleneck comes from
the Combiner method where each GPU thread reads mes-
sages from the message buffer in a non-coalesced way,
because the message buffer is initialized on the CPU that
favors a row-major memory layout and transfered to the
GPU with the memory structure unchanged. But on the
GPU we are often recommended to use a column oriented
layout for data structures to fit in with the practice of
GPU memory access optimization. However, it is difficult to
arrange the message buffer in a way that works well for both
cases. Thus, we will present another lightweight solution to
optimize memory layout in section 4.2.

4 OPTIMIZATIONS

In this section, we present two novel optimizations to im-
prove the performance of the runtime system. As stated
earlier, we assume the CSR representation for the graph on
the GPU.

4.1 Optimizing Load Imbalance with Approximate Sort
Inherent irregularity in some applications may cause imbal-
anced workload distribution among GPU threads, resulting
in ineffective utilization of compute resource. In our case,
each vertex must receive incoming messages from the mes-
sage buffer, while the maximum size of incoming messages

for a vertex is determined by the in-degree of the vertex. As
the in-degree distribution of a graph varies greatly, process-
ing vertices with high variance of incoming messages in a
warp or thread block will lead to workload imbalance. For
example, a single thread in a warp processing comparatively
large incoming messages for the vertex would introduce
wasted resource as every vertex will take as many cycles
as the largest one to process in the warp.

implications: Because current GPUs provide no support
for fine-grained thread-level task scheduling, tackling the
inefficiency incurred by workload irregularity imposes the
responsibility of fine-tuning the algorithm on developers.
An ideal solution to this problem should work well for a
wide range of workloads. For example, it should achieve
highest possible performance for highly irregular work-
loads, and at the same time guarantee lowest possible cost
for regular workloads.

Approaches: To address this issue, one possible ap-
proach is to identify outliers in incoming messages to defer
the processing of these messages to subsequent kernels [18].
For example, vertices with an excessive large/small number
of incoming messages are delayed to process. However, this
method incurs considerable overhead, so more lightweight
solutions are preferred. Although existing work [31] in-
dicates that it is not worthwhile to group packets with
identical or similar size by GPU sorting algorithms when
accelerating the network stream processing with GPUs.
However, we found that pre-sorting the message buffer
according to the vertex in-degree on the CPU can result
in a significant performance increase for the vertex kernel.
Moreover, balancing the workload within warps or thread
blocks does not necessarily require a strict ordering. These
investigations are the direct motivation of designing a GPU-
based approximate sorting algorithm for our system as
detailed below.

Before discussing the details of the approximate sorting,
we first present a high-level overview about this algorithm.
Conceptually, the approximate sorting maps elements to
different buckets with a linear projection, and the ordering
among buckets is guaranteed (all the elements in a bucket
must be larger or smaller than those in its consecutive
bucket). However, we do not maintain ordering in buckets
(elements in a bucket are unordered, but the elements are
similar in size). In comparison, traditional sorting algo-
rithms require a precise ordering among all elements, which
is not necessary for our purpose and incurs more overhead.

As shown in Figure 2, our algorithm operates in three
steps. First, each element in the size array (calculated based
on vertex in-degrees) is mapped into a bucket (the num-
ber of buckets is a pre-defined parameter and typically
much less than the array size). In this step, we maintain
an ordering among all elements that are mapped into the
same buckets and a counter array that records the size of
each bucket. Second, an exclusive prefix sum operation is
performed on the counter array. In the third step, the results
of the above two steps are combined to produce the final
coordinates that are then used to transform the input vector
to an approximately-sorted form.

Step 1: Similar to many parallel sort algorithms that
subdivide the input into equally-sized buckets and then sort
each bucket in parallel, we first map each element of the size

1045-9219 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TPDS.2016.2611659, IEEE
Transactions on Parallel and Distributed Systems

6

5 2 3 1 1 3

max=5,min=1,NUM_REGION=3

3 2 1region_count array 0
offset array

0 3 5region_count array

prefix sum

5 0 3 1 2 4

offset array

2 1 1 3 3 5

sorted size array

0 0 1 2 1

size array
(Incoming Messages Number)

5 2 3 1 1 3

bucket_count array

bucket_count arraybucket_count array

bucket_count array

Fig. 2: Illustration of approximate sort

Listing 1: Assigning elements to buckets.
1 global void assign bucket(uint ∗input,uint lenght,uint max,uint min,
2 uint ∗offset,uint ∗bucket count,uint ∗bucket index)
3 {
4 int idx = threadx.x + blockDim.x ∗ blockIdx.x;
5 uint bucket idx;
6 for (; idx < lenght; idx += total threads)
7 {
8 uint value=input[idx];
9

10 bucket idx = (size − min)∗(NUM BUCKETS − 1)/(max − min);
11 bucket index[idx] = bucket idx;
12

13 offset[idx] = atomicInc(&bucket count[bucket idx], length);
14 }
15 }

array into a bucket. As shown in Listing 1, the number of
buckets is a fixed value NUM BUCKETS, and the mapping
procedure is a linear projection of each element in the input
vector to one of the NUM BUCKETS buckets. The linear
projection is demonstrated at lines 10 and 11 in Listing 1,
where the variables of min and max represent the minimum
and maximum value in the input respectively, which can be
obtained efficiently on GPUs. In this way, each bucket rep-
resents a partition of the interval [min, max], and all buckets
have the same width of max−min

NUM BUCKETS . The elements in
the input vector are assigned to the target bucket whose
value range contains the corresponding element. In addi-
tion, another count array is maintained to record the number
of elements assigned to each bucket. As shown at line 13,
the counting is based on an atomic function provided by
CUDA, atomicInc, to avoid the potential conflicts incurred
by concurrent writes. The function atomicInc returns the old
value located at the address presented by its first parameter,
which can be leveraged to indicate the local ordering among
all the elements assigned to the same bucket. The Kepler
GPUs has substantially improved the throughput of global
memory atomic operations as compared to Fermi GPUs,
which also has been observed in our implementation.

Step 2: Having obtained the counters for each bucket
and the local ordering within a specific bucket, we perform
a prefix sum operation on the counters to determine the
address at which each bucket’s data would start. Given an
input array, the prefix sum, also known as scan, is to gen-
erate a new array in which each element i is the sum of all
elements up to and including/excluding i (corresponding
to inclusive and exclusive prefix sum respectively). Because

Listing 2: the key step of approximate sort.
1 global void appr sort(uint ∗key,uint ∗key sorted,void ∗value,uint length,
2 void ∗value sorted,uint ∗offset,uint ∗bucket count,
3 uint ∗bucket index,uint ∗oldToNew)
4 {
5 int idx = threadIdx.x + blockDim.x ∗ blockIdx.x;
6 uint count = 0;
7 for (; idx < length; idx += total threads)
8 {
9 uint key = key[idx];

10 uint value = value[idx];
11

12 uint bucket index = bucket index[idx];
13 count = backet count[bucket index];
14 uint off = offset[idx];
15 off = off + count;
16

17 key sorted[off] = key;
18 value sort[off] = value;
19 oldToNew[idx] = off;
20 }
21 }

the length of the count array (NUM BUCKETS) is typically
less than that of the length of the input, performing the scan
operation on CPU is much fast than the GPU counterpart.
However, due to the data transfer overhead (in our case,
two transfers), and the fact that we observed devastating
performance degradation when mixing the execution of
the CPU-based scan with other GPUs kernels in a CUDA
stream, the parallel prefix sum is performed on the GPU
using the CUDPP library [4].

Step 3: By combining the atomically-incremented offsets
generated in step 1 and the bucket data locations produced
by the prefix sum (as shown at lines 12-15 in Listing 2), it
is straightforward to scatter the key-value pairs to proper
locations (see lines 17-18). With the sorted offset array,
threads in the same warp or block is able to process incom-
ing messages that are similar in size, leading to balanced
workload distribution. A side effect of the sorting operation
is that we can not directly access the source vertex via an
edge, because the location of the vertex has been changed.
Therefore, we maintain another index array to trace the one-
to-one correspondence between the old index and the new
one (see line 19 in Listing 2). With the mentioned index
array, we need to update the locations of the source and
destination vertices.

Choosing a suitable value for the number of buckets
may have important implications for the efficiency and
effectiveness of our sorting algorithm. As the number of
buckets increases, for inputs exhibiting uniform distribution
of elements, our algorithm would approximate more closely
to the ideal sorting, while the overhead of performing the
prefix sum may increase accordingly. When decreasing the
number of buckets, besides the effect of getting a coarse-
grained approximation for the input vector, time variations
for the kernel assign-bucket may occur as a result of using
the atomic operation to resolve conflicts when multiple
elements are assigned to the same bucket concurrently.
We will present empirical evaluations on this in Section 5.
Furthermore, the approximate sorting may incur additional
overhead for workloads exhibiting abnormal degree distri-
bution. For example, if a very large number of vertices in
a graph have similar degrees, it would be not necessary to
perform the approximate sorting. One solution is to examine

1045-9219 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TPDS.2016.2611659, IEEE
Transactions on Parallel and Distributed Systems

7

(a) row major

(b) column major

2

3

4 5 6

7 8 9

10 11 12 13 14

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

0

1

2 3 4

5

6

7

8

9

10

11

12

1013

14

0 2 3 4 7 10 1 5 8 11 ... 14

0 1

Fig. 3: Two kinds of data layouts

the difference between the maximum and minimum value.
If it is below a specified threshold, the sorting operation can
be disabled dynamically.

4.2 Data Layout Remapping of the Message Buffer

Given the fact that messages are always sent to the mes-
sage buffer allocated and managed by the runtime system,
we have two choices for the data layout of the array-
based message buffer: row-major and column-major. The
two types of data layouts are illustrated in Figure 3. The
top half of both Figure 3 (a) and (b) is the conceptual
representation, where arrows indicate the accessing threads.
The actual memory layout is presented in the bottom half
in Figure 3, from which we can see that threads can access
contiguous memory location with the column-major layout,
whereas memory accesses with the row-major layout are
not coalesced. In this way, with the column-major layout,
the GPU threads can access the data in a coalesced way as
much as possible (some threads may have no data to pro-
cess), while the row-major layout makes the global memory
access among GPU threads separated with variable strides,
violating the principle of coalesced memory access.

Medusa adopts an array-based buffer management
mechanism for efficiently sending and receiving messages.
In Medusa, the size of the message buffer is pre-determined
according to the total number of edges in a graph, and
then the exact locations to which edges will send messages
are calculated on the CPU. As a result, the write positions
of messages sent to the same vertex are guaranteed to be
consecutive as shown in Figure 4. This scheme proposed
by Medusa avoids dynamic memory allocation and atomic
operations.

Although the programming model of attaching one ver-
tex to one GPU thread is simple to understand and straight-
forward to implement, potential performance issues may
arise if no proper guidance is made. One key observation
is that, for certain applications (like ours), the difference
of favored data layout between the CPU and GPU may
result in suboptimal performance. On the CPU, applications

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

0 1 2 3 4 5

message buffer

vertices

accept incoming messages

0

3

2

5

41

Fig. 4: The graph aware buffer scheme proposed by Medusa

may prefer row-major data layout because of its extensive
support for features such as cache locality and prefetching
at the hardware layer. In contrast, GPU applications benefit
from memory coalescing, which requires a column-major
data layout so that threads in a warp can access contiguous
data and achieve better locality. To this end, we propose
a data layout remapping algorithm against the message
buffer to take full advantage of coalesced access to the global
memory.

Implications: It is desirable to have the hardware, driver,
or runtime provide mechanisms to automate the transfor-
mation of data layout, saving additional costs without com-
promising transparency. Unfortunately, such mechanisms
do not exist in current GPUs platforms. Therefore, we need
to implement our own data remapping approach that is
light-weight enough to avoid both noticeable performance
degradation and extra memory consumption.

Approaches: As shown in Figure 4, with the row major
data layout, each GPU thread handling one vertex scans
the relevant segment of the message buffer from the first
element to the last iteratively, which violates the common
practice of coalesced memory access. However, implement-
ing strict column-major layout in a single array costs too
much extra memory space. Because we can keep the global
memory accesses within a warp as coalesced as possible, it
is not necessary to maintain strict column-major data layout
for all the GPU threads. The idea of our data remapping
approach is to group vertices at the granularity of a warp.
Therefore, the data layout within a group is column-major,
and among groups the data layout is row-major. We will
elaborate our data layout remapping algorithm in the fol-
lowing three steps, and for simplicity, we assume that three
vertices consist of one group.

In the first step, similar to the approximate sorting that
maps the input array into a bucket, we first split the size
array into groups each with the same number of items.
As demonstrated in Figure 5, the number of elements in
each group is a constant value Per Group Num that is
set to 3 in our example. As a consequence, we can obtain
the number of groups using the formula d length(size)

Per Group Nume
and use the maximum value in each group to form the
group array, which is implemented on the GPU to avoid
the data transfer overhead between the CPU and GPU.
The capacity of a vertex’s incoming messages is determined
by the maximum value of the group to which the vertex
belongs.

The goal of step two is to produce the value of how much
memory we need to allocate for the message buffer and
generate the offset array for groups in the message buffer.
Concretely, the capacity of a vertex’s incoming messages

1045-9219 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TPDS.2016.2611659, IEEE
Transactions on Parallel and Distributed Systems

8

Per_Group_Num=3

3 4 5

Group Zero

2 5group array

multiple three

6 15

21 0 6

Reduce(sum)

The size of memory
we allocate for the

messagebuffer

prefix sum

offset array
(the group offset in the

messagebuffer)

Group One

maximum size in the group

2

00 11 22 33 44 55 vertices

size array
1 1 3 3 5

3 3 5

0 1 2

2 1 1

Fig. 5: Data layout remapping algorithm (step 1 - step 2)

depend on which group it belongs to and the correspond-
ing value in the group array. Each element in group array
is multiplied by Per Group Num, which generates another
new array. The elements in the new array indicate how
much memory space each group should allocate. We can
obtain the size of the message buffer by the reduce operation
and use exclusive prefix sum to produce the offset array that
represents each group’s offset in the message buffer. Parallel
prefix sum and reduce can be efficiently implemented on the
GPU, and we rely on the CUDPP library [4] to perform these
operations.

In the third step, our goal is to perform the remapping
operation on the original message buffer. As depicted in
Figure 6, the two arrays accept vertex and message label are
part of the message buffer and used to facilitate the layout
transformation. The former traces which vertex will read
from the indicated location, and the latter records the index
number for each segment (allocated for each vertex) in the
message buffer. The accept vertex array has the same number
of elements as the message buffer, so we use it to illus-
trate the transformation in Figure 6. But the actual layout
remapping is performed on the message buffer not the
accept vertex array. In this step, we also need the offset array
deduced from the previous step. As presented in Listing 3,
we first need to obtain the target vertex and the index used
to access the message buffer from the message label array
before remapping (see lines 8-9). Next, we determine the
group to which the vertex belongs and the corresponding
index using accept vertex%Per Group Num (see lines
11-12). After calculating the new position for the column-
major layout (see lines 14-16), we can copy the content in
the message buffer to new locations (line 18).

Although involving multiple kernel invocations, the data
layout remapping incurs little performance overhead due
to the lightweight design and the exploitation of GPU’s
specific features. The benefit of data remapping comes at the
cost of supplementary GPU memory reserved to hold the
remapped content. However, we can control the value of the
parameter Per Group Num to manage the free memory.
For example, when Per Group Num = 1, the data layout
remains intact and there is no extra memory consumption.

0 0 1 2 3 3 3 4 4 4 5 5 5 5 5

the original messagebufferPer_Group_Num=3 accept_vertex array

0 1 0 0 0 1 2 0 1 2 0 1 2 3 4

message_label array

0 6

offset array
(the group offset in the messagebuffer)

0 1 2

0

3 4 5

3 4 5

3 4 5

5

5

remapped messagebuffer

Fig. 6: Data layout remapping algorithm (step 3)

Listing 3: Data layout transformation kernel.
1 global void remap(int ∗accept vertex array, int∗ message label array,
2 int ∗message content,int length,
3 int ∗offset array,int ∗remap message content)
4 {
5 int idx = blockId.x ∗ blockDim.x + threadIdx.x;
6 for (; idx < length; tid += total threads)
7 {
8 int accept vertex = accept vertex array[idx];
9 int message label = message label array[idx];

10

11 int group id = accept vertex / Per Group Num;
12 int group inner id = accept vertex % Per Group Num;
13

14 int offset group = offset array[group id];
15 int new position = offset group + group inner id;
16 new position += message label ∗ Per Group Num;
17

18 remap message content[new position] = message content[idx];
19 }
20 }

Therefore, choosing a suitable value for Per Group Num
may have important implications for the efficiency and
effectiveness of our data layout remapping algorithm. As
Per Group Num increases, the effect on memory coalesc-
ing will be better while memory consumption increases
correspondingly. In our case, we set Per Group Num to
32 because the memory loads by threads of a warp are
coalesced. Furthermore, we plan to investigate in-place data
remapping approaches to alleviate this limitation in our
future work. More detailed analysis about the performance
and space overhead can be found in Section 5.

Our data layout remapping is executed after the approx-
imate sorting because the incoming messages associated
with the vertices in a group are roughly equal, which can
reduce memory space consumption. In the preprocessing
phase as mentioned above, we need to establish the size of
the message buffer and determine the positions for message
delivering and receiving. Thus, the data layout remapping
is integrated as part of the preprocessing phase, and it is not
necessary to remap the message buffer in each superstep.

5 EXPERIMENTAL RESULTS

In this section, we present the experimental results from
four aspects. First, we evaluate the overall performance

1045-9219 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TPDS.2016.2611659, IEEE
Transactions on Parallel and Distributed Systems

9

TABLE 2: Characteristics of workloads used in the experiments

Workload In short Nodes Edges Max(d) η

ego-Gplus ego 107,614 13,673,453 17058 99.9%
soc-Pokec soc 1,632,803 30,622,564 6808 76.3%

com-LiveJournal com 3,997,962 34,681,189 2454 76.7%
cit-Patents cit 3,774,768 16,518,948 779 61.9%

RMAT RMAT 1,000,000 16,000,000 555 52.4%
Random Rnd 1,000,000 16,000,000 41 99.9%

compared with an existing GPU-based graph processing
framework Medusa. Second, we explore the efficiency of the
preprocessing phase in our system. Third, we investigate the
effectiveness of the approximate sorting algorithm. Forth,
we analyze the performance impact of the data remapping
algorithm.

5.1 Experiment Setup

Real world and synthetic graphs are both considered in
this paper. Table 2 summarizes the characteristics of the
workloads used in our experiments. The six workloads we
use are all directed graphs. We define d as the in-degree of
a vertex and Max(d) as the maximum in-degree in a graph.
For simplicity, d ≥ 2 means the number of vertices whose
in-degree is greater than one, its percentage is represented
by the variable η. Ego-Gplus [22] consists of circles from
Google+ and the η is equal to 99.9%, indicating that the in-
degree of vast majority of vertices is greater than one in the
graph. Soc-Pokec [33] and Com-LiveJournal [36] both come
from online social networks. The η of the two graphs is ap-
proximately the same (76%). Cit-Patents [21] is maintained
by the National Bureau of Economic Research and its η is
much smaller, implying that 38.1% of vertices in the graph
have less than two in-edges. All the graphs exhibit power
law degree distribution.

RMAT and Random are two synthetically generated
workloads. RMAT has a power law degree distribution, and
the η is 52.4%. Random is a uniformly distributed graph
workload and Max(d) is much smaller than others. The
average degree of both of the synthetic workloads [6] is con-
figured to 16. Because this paper focuses on the issue of the
load imbalance among GPU threads and the optimization of
coalesced memory access, the major workloads we choose
are power-law graphs. The experiments on the Random
workload show that our optimizations are also effective
to non-power-law graphs. We plan to conduct experiments
on more real graphs such as meshes and road networks in
future work.

The hardware platform in our experiments is shown in
Table 3. The workstation is equipped with an Intel Xeon
E5-2648L CPU with 8 GB of DDR3 memory, and contains a
GeForce GTX 780 GPU with 12 multiprocessors each with
192 processing cores. The GPU has 3GB of DDR5 memory.

5.2 Overall Performance

We implement three representative graph algorithms using
the Medusa API as the baseline to compare the overall
performance between our system and Medusa. The execu-
tion time contains two parts: the preprocessing time and
the graph processing time. The three representative graph

TABLE 3: the feature of machines used in the experiments

Feature Intel Xeon E5 2648L GeForce GTX 780

Cores/Proc 8 12
Hardware Threads/core 2 192
Frequency/Core(GHz) 1.8 0.90

Main Memary/proc(GB) 8 DDR3 3 DDR5
Memory Bandwidth/Proc(GB/s) 57.6 288.4

algorithms used for comparison are: PageRank [8], single
source shortest path (SSSP) algorithm [24], and the HCC
algorithm to find connected components in a graph [28].

As shown in Figure 7, the PageRank algorithm is run
for 50 iterations, and we can observe that the our system
achieves 1.7x to 2.3x speedup. When evaluating the SSSP
algorithm, we randomly select the source vertex in the
workloads. Figure 8 demonstrates that the speedup of our
system ranges from 1.6x to 4.5x. In Figure 9, we can see 1.7x
to 3.7x performance improvement for the HCC algorithm as
compared to Medusa. The SSSP algorithm with the dataset
’com’ achieves the best speedup (4.5x), mainly because of
its simpler internal implementation logic as compared to
the other two algorithms. Given that the ’com’ graph is the
most complex dataset we tested, this significant speedup for
SSSP, from another perspective, reflects the effectiveness of
our optimizations in handling large graphs. In summary,
our system can attain 1.6x to 4.5x speedup for the three
representative graph algorithms across all workloads in
contrast to Medusa, and we plan to perform experimental
evaluations on more graph algorithms and datasets in future
work.

5.3 The Preprocessing Time Comparison
We explore the overhead of the preprocessing phase in this
section. In our system, edges are responsible for sending
messages to the message buffer, from which messages are
consumed by corresponding vertices. Therefore, precise po-
sitions for edges and vertices to manipulate the messages
need to be determined in advance. Medusa proposed a
graph-aware buffer scheme to establish the positions. How-
ever, it is implemented on the CPU and can not take full
advantage of the GPU’s computing power. In comparison,
our system conducts the preprocessing on the GPU. For
further optimization, we offload the data layout remapping
operation in the preprocessing phase to the GPU. In this
way, we can avoid the unnecessary conversion from row-
major to column-major layout for each access to the global
memory and calculate the positions only once.

As shown in Table 4, we can observe that our sys-
tem significantly outperforms Medusa in the preprocessing
stage even the overhead of layout remapping is considered,
because of computation offloading to the GPU including
the data remapping procedure. In this test, we set the
parameter of Per Group Num to 32. The achieved speedup
impressively ranges from 10x to 50x. One prominent feature
is that the overhead of remapping remains stable over all
workloads irrespective of the complexity of the graphs. For
example, the overhead of ego-Gplus is close to that of soc-
Pokec, while the latter has 16x more nodes and 2.2x more
edges than the former. In contrast, the overhead in Medusa
shows obvious causality with the scale of graphs, and it

1045-9219 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TPDS.2016.2611659, IEEE
Transactions on Parallel and Distributed Systems

10

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

ego
soc

com
cit RM

AT

Rnd

E
xe

cu
ti

on
 T

im
e

(s
)

Medusa
PregelGPU
CuSha

Fig. 7: Performance comparison of PageR-
ank

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1.8

ego
soc

com
cit RM

AT

Rnd

E
xe

cu
ti

on
 T

im
e

(s
)

Medusa
PregelGPU
CuSha

Fig. 8: Performance comparison of SSSP

 0

 0.5

 1

 1.5

 2

ego
soc

com
cit RM

AT

Rnd

E
xe

cu
ti

on
 T

im
e

(s
)

Medusa
PregelGPU
CuSha

Fig. 9: Performance comparison of HCC

TABLE 4: The overhead of preprocessing (seconds)

workload Our system Medusa speedup

ego-Gplus 0.016 0.21 13
soc-Pokec 0.020 0.449 22

com-LiveJournal 0.030 1.002 33
cit-Patents 0.012 0.665 55

RMAT 0.012 0.305 25
Random 0.011 0.328 30

raises with the increasing number of nodes and edges in the
graphs.

5.4 Comparison with CuSha
Our original goal is to show the effectiveness of the pro-
posed optimizations that are orthogonal to the design of ex-
isting system, so we base our prototype system on Medusa.
To further demonstrate the superiority, we compare with
CuSha [7] in this section. As shown in Figure 7, 8, and 9,
our system outperforms CuSha in most cases. For SSSP and
HCC, CuSha even underperforms the original Medusa due
to the large overhead of its shard pre-processing. For exam-
ple, for the SSSP algorithm, the execution time of CuSha on
Random and ego-Gplus is 1423ms (1366ms + 57ms) and 547
ms (439ms + 108ms) respectively. Our system takes 520ms
(11ms + 509ms) and 496ms (16ms + 480ms) for the same
dataset. The preprocessing time of CuSha (collecting graph
data into shard form) is much larger than ours (1366 vs
11, and 439 vs 16), but CuSha outperform our system in
other parts of computation (57 vs 509, and 108 vs 480). On
the whole, our system outperforms CuSha by 2.7x and 1.1x
respectively on the two dataset. However, CuSha shows
slightly better performance with PageRank under the ego,
com, and cit dataset.

5.5 Approximate Sorting
In this part, we evaluate the effectiveness of approximate
sorting by answering two questions: To what extent can
we improve the performance by sorting? How fast is the
approximate sorting as compared to existing GPU-based
sorting algorithms? The answer to the first question can
be obtained from Figure 10, which shows non-trivial im-
provement due to the alleviation of imbalance workload

distribution. In this experiment, we run PageRank for 50
iterations. The performance can be improved by 8% ∼ 20%
when the sorting is enabled. In particular, the improvement
for power law graphs is more significant than the random
graph (Random) with uniform degree distribution.

However, more attentions should be paid on the accu-
racy and associated overhead in order to achieve satisfactory
gains in performance. Figure 11 presents the answers for
the second question. We compare approximate sorting with
three commonly-used and high-performance GPU-based
sorting algorithms (FPGquick sorting [10], merge sorting,
and radix sorting), and a uniform size distribution for all
the experiments is assumed. We prepare three datasets
(M means 106) and set BUCKET NUMBER to 1000 in the
approximate sorting. Both quick sort and merge sort are
comparison based divide-and-conquer algorithms, and have
average O(nlogn) time complexity. Radix sort is a non-
comparative integer sorting algorithm by sorting individual
digits. Its time complexity is O(kn) where k is the highest
number of digits among the input key set. k determines the
number of iterations needed to accomplish sorting. Approx-
imate sort’s complexity is O(n) with only one iteration to
map keys to buckets, which is different from others that
require recursive or iterative executions. Having presented
the complexity analysis, we compare the performance of the
four algorithms next.

As shown in the Figure 11, our approach outperforms
the competitors significantly. The approximate sorting con-
sumes less than 1 millisecond, reflecting a 21.7x speedup
in the best case compared to merge sorting and a 6.1x
speedup in the worse case in contrast to radix sorting. It is
worth noting that the overhead of the approximate sorting
increases slowly with the growing scale of the datasets,
while the costs of the other three sorting algorithms climbs
up rapidly as the problem scale increases especially for the
FPGquick sorting and merge sorting.

We use a metric warp execution efficiency of CUDA pro-
filer [3] to demonstrate the microscopic impact of the ap-
proximating sorting. The warp execution efficiency presents
the ratio of the average active threads per warp to the
maximum number of threads per warp supported on a
multiprocessor. With this metric, we can observe how sort-
ing increases the number of active threads in a warp, be-

1045-9219 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TPDS.2016.2611659, IEEE
Transactions on Parallel and Distributed Systems

11

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

ego
soc

com
cit RM

AT

Rnd

E
xe

cu
ti

on
 T

im
e

(s
)

w/o-sort
w-sort

Fig. 10: with sorting vs. without sorting

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

1M 2M 4M

E
xe

cu
ti

on
 T

im
e

(m
s)

apportSort
FPGquicksort
MergeSort
radixSort

Fig. 11: Comparison with traditional sort-
ing algorithms

 1.4

 1.5

 1.6

 1.7

 1.8

 1.9

0 200
400

600
800

1000
1200

E
xe

cu
ti

on
 T

im
e

(s
)

The Number of Buckets

cit-Patents

Fig. 12: Performance impact of the number
of buckets.

TABLE 5: Comparison of warp execution efficiency (WEE) for the PageRank algorithm.

ego soc com cit RMAT Rnd

WEE/with sorting 9.1%/89.8% 21.8%/95.6% 29.4%/92.1% 37.9%/94.2% 35.7%/95.6% 68%/91.9%

TABLE 6: The improvement of overall performance of the
approximate sort over radix sort.

ego soc com cit RMAT Rnd

apprx vs. radix 5.1% 11.4% 21.7% 25.1% 12.4% 12.9%

cause irregular load distribution would severely constrain
the number of concurrently running threads. As shown in
Table 5, with approximate sorting, warp execution efficiency
is greatly improved across all workloads. The improvement
is especially prominent for the ’ego’ dataset (about 10x) that
has the most irregular degree distribution.

Table 6 shows the overall performance improvement of
the approximate sort over the radix sort that is the fastest
traditional sort algorithm in our evaluation. Because the
sorting is performed on the vertex array, the improvement
ratio for ’ego’ (with minimum nodes in our dataset) is
marginal (5.1%), and the graph ’cit’ (with the second largest
number of nodes) achieves the best ratio (25.1%). Besides
the vertex array, the sorting procedure also needs additional
logic to adjust the edge array. Thus, the improvement of the
graph ’com’ (with both the largest number of nodes and
edges) is less than that of ’cit’.

Next, we investigate the impact of the value of
BUCKET NUMBER on the overall performance. In Fig-
ure 12, we use the graph cit-Patents and the PageRank al-
gorithm to evaluate the performance under different values
of BUCKET NUMBER (excluding the run time of sorting
itself). BUCKET NUMBER=0 implies that no sorting is
conducted. And the increasing of the number of buckets
directly translate into higher performance (see the linear
decrease of the execution time in the figure).

As discussed in Section 4.1, graphs with abnormal de-
gree distribution (e.g., a majority of nodes have similar
degrees) can be handled by comparing the maximum and
minimum degree. The time consumption of obtaining the
maximum and minimum degree is less than 0.15 millisec-
onds that is already included in the preprocessing time, so

the overhead of dynamic checking the degree distribution is
negligible. In our current implementation, if the difference
between the maximum and minimum degree is 0, we set
BUCKET NUMBER to 0 to disable the sorting. The exper-
imental results from the Random graph (1 million nodes
with min degree 1 and max degree 41) also demonstrate the
effectiveness of approximating sorting on such graphs with
uniform degree distribution.

5.6 The Performance of Data Layout Remapping

For GPU devices of compute capability 2.x or 3.x, concurrent
accesses to the global memory by the threads in a warp
are coalesced into a number of transactions that is equal to
the number of cache lines necessary to service all of the
threads in the warp [5]. We study the effect of the data
layout remapping in this section. As shown in Figure 13, we
also use the PageRank algorithm (50 iterations) to perform
the comparison between two cases, one with data layout
remapping and the other without. Per Group Num is set
to 32 that is the warp size.

In Figure 13, we can see that the performance improve-
ment varies between 10% and 25% by enabling the data
layout remapping. Another observation is that the perfor-
mance improvement is related to the value of η for power-
law graphs. Workloads with smaller η exhibit narrower
difference between the two different layouts than those with
larger η, because of the distinguishable in-degree distribu-
tions. For example, for the workload ego with the largest
value of η, the improvement reaches 25%.

In order to show how layout remapping improves co-
alesced memory access from microscopic perspective, we
present the results about global store/load efficiency col-
lected using the CUDA visual profiler [3] in Table 7. As
suggested by the profiler, we should minimize the metrics
gld efficiency and gst efficiency wherever possible in order
to mitigate un-coalesced memory accesses. As shown in
Table 7, the store efficiency increases slightly when the sort-

1045-9219 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TPDS.2016.2611659, IEEE
Transactions on Parallel and Distributed Systems

12

TABLE 7: Comparison of global store/load efficiency for the PageRank algorithm.

global efficiency ego soc com cit RMAT Rnd

store/with remapping 64.2%/64.6% 51.3%/55.6% 49.4%/51.1% 57.7%/60.2% 50.5%/55.4% 57.1%/61.9%
load/with remapping 12.7%/91.4% 18.2%/93.1% 19.5%/94.1% 22.1%/92.2% 13.8%/92.1% 14.5%/90.1%

 0

 0.5

 1

 1.5

 2

 2.5

 3

ego
soc

com
cit RM

AT

Rnd

E
xe

cu
ti

on
 T

im
e

(s
)

w/o-remap
w-remap

Fig. 13: Performance impact of layout remapping

 0

 0.5

 1

 1.5

 2

 2.5

ego
soc

com
cit RM

AT

Rnd

P
er

ce
nt

ag
e

(%
)

Per_Group_Num=32

Fig. 14: Extra memory consumption

ing is enabled, while the load efficiency exhibits remarkable
improvement with the approximate sorting.

Next, we analyze the extra memory consumption in-
curred by the data layout remapping. Overall, the extra
memory needed to implement the data remapping is re-
stricted across all the workloads. It is directly proportional
to the value of Max(d) in power-law graphs. As shown in
Figure 14, for the workload ego withMax(d) = 17058, 2.3%
more memory space consumption is needed, while for the
graph soc (Max(d) = 6808) the ratio decreases to 0.89%.
For the graph Rnd with uniform degree distribution, the
memory overhead is even much lower than others.

6 RELATED WORK

Distributed graph processing systems. Driven by the rapid
development of social networks, graph computing has been
a hot issue in both academia and industry in recent years.
HaLoop [9] and Pegasus [14] are graph processing systems
based on Mapreduce. But due to the inherent characteristics
of graph processing, it is not suitable to directly leverage the
MapReduce programming paradigm to perform graph com-
putations. To support efficient graph computation, vertex-
centric programming model was proposed in Pregel and
its successive variances. Compared to Pregel, GPS [28] and
Mizan [19] enhances the original Pregel model by intro-
ducing new features such as adjusting the graph dynami-
cally across nodes during the computation. Kineograph [11]
performs graph computation on changing graph structure,
including an incremental graph computation engine, which
can handle continuous updates and produce timely results.

Multicore graph processing systems. Grace [27] imple-
ments a vertex-centric model, containing a series of graph
and multicore specific optimizations that includes graph
partitioning, in-memory vertex ordering, updates batching,
and load-balancing. GraphChi [20] is a disk based graph
processing system and designed to run on a single machine
with limited memory by breaking large graphs into small
parts. In GraphChi, a single PC can perform graph computa-
tions on very large graphs with performance comparable to
large-scale distributed systems. TurboGraph [16] is another
disk-based graph engine to process billion-scale graphs on
a single PC, by fully exploiting multicore parallelism and
SSD IO parallelism. GPSA [32] is a single-machine graph
processing system based on the actor programming model,
which can exploit the capabilities of multi-core systems
as much as possible. GPSA decouples computation from
message dispatching, which makes it possible to overlap the
execution of the two processing procedures.

GPU based graph processing frameworks. Medusa [37]
is an efficient implementation of the Pregel model for GPUs.
Medusa provides a more fine-grained programming inter-
face, exposing data parallelism on edges, vertices, and mes-
sages called EMV model. Even with the fine-grained inter-
face, Medusa introduces load imbalance and non-coalesced
memory access among threads on the GPU, which leads
to underutilization of GPU computing resources. Further-
more, the EMV model is still complicated with too many
details exposed to developers compared to the original
vertex-centric model. In this paper, we present an Edge-
Vertex model and two optimizations to address these issues.
CuSha [7] is a graph processing framework, proposing new
graph representations such as G-Shards and Concatenated
Windows to minimize non-coalesced memory accesses and
achieve higher GPU utilization for processing sparse graphs.
However, the new graph representation in CuSha incurs
larger memory space overhead than the conventional CSR
representation. TOTEM [15] is a graph processing engine for

1045-9219 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TPDS.2016.2611659, IEEE
Transactions on Parallel and Distributed Systems

13

heterogeneous many-core systems, which reduces develop-
ment complexity and applies algorithm-agnostic optimiza-
tions to improve performance.

Gunrock [35] is a high-performance graph processing
library targeting the GPU. Gunrock implements a data-
centric abstraction, and strikes a balance between perfor-
mance and expressiveness by coupling GPU computing
primitives and optimization strategies with a high-level
programming model. GraphReduce [29] is a scalable GPU-
based framework that operates on graphs that exceed the
GPU’s memory capacity. GraphReduce adopts a combi-
nation of edge- and vertex-centric implementations and
uses multiple GPU streams to exploit the high degree of
parallelism of GPUs. Enterprise [23] is a new GPU-based
BFS system that combines three techniques to remove po-
tential performance bottlenecks: streamlined GPU threads
scheduling, GPU workload balancing, and GPU based BFS
direction optimization. The GPU workload balancing that
classifies nodes based on different out-degrees is similar
to our sorting-based load-balancing strategy, but using a
different approach. Frog [30] is a light-weight asynchronous
processing framework with a hybrid coloring model. It
includes three parts: a hybrid graph coloring algorithm, an
asynchronous execution model, and a streaming execution
engine on GPUs. GraphBIG [26] is a comprehensive bench-
mark suites for graph computing, which supports a wide
selection of workloads for both CPU and GPU, and covers a
broad scope of graph computing applications.

Existing works mainly focus on a general and high-
performance GPU-based framework to ease the develop-
ment of graph processing algorithms. We instead target the
optimizations of graph processing on GPUs based on the
observations from the designs of GPU-based graph systems.
Although we only perform comparison with Medusa (our
work is based on Medusa), the lightweight optimization
strategies proposed in this paper are orthogonal to the
optimizations in other GPU graph processing systems, and
may also be applicable to those systems.

7 CONCLUSIONS

In this paper, we propose a general graph computing frame-
work for GPUs that achieves the goals of easy-to-use and
good performance with a simplified programming model.
Specifically, we develop a Edge-Vertex model in order to
better utilize the fine-grained parallelism of GPUs; and
we identify that load imbalance can be alleviated with
the lightweight approximate sorting and that non-coalesced
memory access can be mitigated by the data layout remap-
ping. In addition, the integration of data remapping into
the preprocessing of graph data can significantly improve
the overall performance. As demonstrated by experimental
evaluation, our system can achieve up to 4.5x performance
speedup compared to the state-of-the-art across a wide
range of workloads. As for future work, we are planning to
extend our system to support multi-GPUs and distributed
environments.

ACKNOWLEDGMENT

This research was supported in part by the National Science
Foundation of China under grants 61272190, 61572179 and

61173166. Jianhua Sun is the corresponding author.

REFERENCES

[1] “Apache giraph,” http://hama.apache.org.
[2] “Apache hama,” http://hama.apache.org.
[3] “Cuda profiler,” http://docs.nvidia.com/cuda/profiler-users-

guide/.
[4] “Cudpp: Cuda data parallel primitives library,”

http://cudpp.github.io/.
[5] “Nvidia cuda,” http://www.nvidia.com/object/cuda.
[6] D. A. Bader and K. Madduri, “Gtgraph: A synthetic graph gener-

ator suite,” For the 9th DIMACS Implementation Challenge, 2006.
[7] F. K. K. V. R. G. L. N. Bhuyan, “Cusha: Vertex-centric graph

processing on gpus,” in Proceedings of the 23rd International Sympo-
sium on High-performance Parallel and Distributed Computing (HPDC
2014). ACM, 2014, pp. 239–252.

[8] S. Brin and L. Page, “The anatomy of a large-scale hypertextual
web search engine,” Computer networks and ISDN systems, vol. 30,
no. 1, pp. 107–117, 1998.

[9] Y. Bu, B. Howe, M. Balazinska, and M. D. Ernst, “Haloop: Efficient
iterative data processing on large clusters,” Proceedings of the VLDB
Endowment, vol. 3, no. 1-2, pp. 285–296, 2010.

[10] D. Cederman and P. Tsigas, “Gpu-quicksort: A practical quicksort
algorithm for graphics processors,” Journal of Experimental Algo-
rithmics (JEA), vol. 14, p. 4, 2009.

[11] R. Cheng, J. Hong, A. Kyrola, Y. Miao, X. Weng, M. Wu, F. Yang,
L. Zhou, F. Zhao, and E. Chen, “Kineograph: Taking the pulse of a
fast-changing and connected world,” in Proceedings of the 7th ACM
european conference on Computer Systems. ACM, 2012, pp. 85–98.

[12] B. V. Cherkassky, A. V. Goldberg, and T. Radzik, “Shortest paths
algorithms: Theory and experimental evaluation,” Mathematical
programming, vol. 73, no. 2, pp. 129–174, 1996.

[13] J. Dean and S. Ghemawat, “Mapreduce: Simplified data processing
on large clusters,” Communications of the ACM, vol. 51, no. 1, pp.
107–113, 2008.

[14] E. Deelman, G. Singh, M.-H. Su, J. Blythe, Y. Gil, C. Kesselman,
G. Mehta, K. Vahi, G. B. Berriman, J. Good et al., “Pegasus:
A framework for mapping complex scientific workflows onto
distributed systems,” Scientific Programming, vol. 13, no. 3, pp. 219–
237, 2005.

[15] A. Gharaibeh, L. B. Costa, E. Santos-Neto, and M. Ripeanu, “A
yoke of oxen and a thousand chickens for heavy lifting graph
processing,” in Proceedings of the the 21st International Conference on
Parallel Architectures and Compilation Techniques. ACM, 2012, pp.
345–354.

[16] W.-S. Han, S. Lee, K. Park, J.-H. Lee, M.-S. Kim, J. Kim, and H. Yu,
“Turbograph: a fast parallel graph engine handling billion-scale
graphs in a single pc,” in Proceedings of the 19th ACM SIGKDD
international conference on Knowledge discovery and data mining.
ACM, 2013, pp. 77–85.

[17] P. Harish and P. Narayanan, “Accelerating large graph algorithms
on the gpu using cuda,” in High performance computing–HiPC 2007.
Springer, 2007, pp. 197–208.

[18] S. Hong, S. K. Kim, T. Oguntebi, and K. Olukotun, “Accelerating
cuda graph algorithms at maximum warp,” ACM SIGPLAN No-
tices, vol. 46, no. 8, pp. 267–276, 2011.

[19] Z. Khayyat, K. Awara, A. Alonazi, H. Jamjoom, D. Williams, and
P. Kalnis, “Mizan: A system for dynamic load balancing in large-
scale graph processing,” in Proceedings of the 8th ACM European
Conference on Computer Systems. ACM, 2013, pp. 169–182.

[20] A. Kyrola, G. E. Blelloch, and C. Guestrin, “Graphchi: Large-scale
graph computation on just a pc.” in OSDI, vol. 12, 2012, pp. 31–46.

[21] J. Leskovec, J. Kleinberg, and C. Faloutsos, “Graphs over time:
Densification laws, shrinking diameters and possible explana-
tions,” in Proceedings of the eleventh ACM SIGKDD international
conference on Knowledge discovery in data mining. ACM, 2005, pp.
177–187.

[22] J. Leskovec and J. J. Mcauley, “Learning to discover social circles in
ego networks,” in Advances in neural information processing systems,
2012, pp. 539–547.

[23] H. Liu and H. H. Huang, “Enterprise: Breadth-first graph traversal
on gpus,” in Proceedings of the International Conference for High
Performance Computing, Networking, Storage and Analysis (SC 2015).
ACM, 2015, pp. 68:1–68:12.

1045-9219 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TPDS.2016.2611659, IEEE
Transactions on Parallel and Distributed Systems

14

[24] G. Malewicz, M. H. Austern, A. J. Bik, J. C. Dehnert, I. Horn,
N. Leiser, and G. Czajkowski, “Pregel: A system for large-scale
graph processing,” in Proceedings of the 2010 ACM SIGMOD Inter-
national Conference on Management of data. ACM, 2010, pp. 135–146.

[25] A. Munshi, “Opencl: Parallel computing on the gpu and cpu,”
SIGGRAPH, Tutorial, 2008.

[26] L. Nai, Y. Xia, I. G. Tanase, H. Kim, and C.-Y. Lin, “Graphbig:
Understanding graph computing in the context of industrial
solutions,” in Proceedings of the International Conference for High
Performance Computing, Networking, Storage and Analysis, ser. SC
’15. New York, NY, USA: ACM, 2015, pp. 69:1–69:12.

[27] V. Prabhakaran, M. Wu, X. Weng, F. McSherry, L. Zhou, and
M. Haradasan, “Managing large graphs on multi-cores with graph
awareness.” in USENIX Annual Technical Conference, 2012, pp. 41–
52.

[28] S. Salihoglu and J. Widom, “Gps: A graph processing system,”
in Proceedings of the 25th International Conference on Scientific and
Statistical Database Management. ACM, 2013, pp. 22:1–22:12.

[29] D. Sengupta, S. Song, K. Agarwal, and K. Schwan, “Graphreduce:
Processing large-scale graphs on accelerator-based systems,” in
Proceedings of the International Conference for High Performance Com-
puting, Networking, Storage and Analysis (SC 2015). ACM, 2015,
pp. 28:1–28:12.

[30] X. S. Shi, J. Liang, S. Di, B. He, H. Jin, L. Lu, Z. Wang, X. Luo,
and J. Zhong, “Optimization of asynchronous graph processing
on gpu with hybrid coloring model,” in Proceedings of the the
20th ACM SIGPLAN Symposium on Principles and Practice of Parallel
Programming (PPoPP 2015). ACM, 2015.

[31] R. Smith, N. Goyal, J. Ormont, K. Sankaralingam, and C. Estan,
“Evaluating gpus for network packet signature matching,” in
Performance Analysis of Systems and Software, 2009. ISPASS 2009.
IEEE International Symposium on. IEEE, 2009, pp. 175–184.

[32] J. Sun, D. Zhou, H. Chen, C. Chang, Z. Chen, w. Li, and L. He,
“Gpsa: A graph processing system with actors,” in Proceedings of
the 44th International Conference on Parallel Processing (ICPP 2015).
ACM, 2015, pp. 709–718.

[33] L. Takac and M. Zabovsky, “Data analysis in public social net-
works,” in International Scientific Conference AND International
Workshop Present Day Trends of Innovations, 2012.

[34] L. G. Valiant, “A bridging model for parallel computation,” Com-
munications of the ACM, vol. 33, no. 8, pp. 103–111, 1990.

[35] Y. Wang, A. Davidson, Y. Pan, Y. Wu, A. Riffel, and J. D. Owens,
“Gunrock: A high-performance graph processing library on the
gpu,” in Proceedings of the 21th ACM SIGPLAN Symposium on
Principles and Practice of Parallel Programming (PPoPP 2016). ACM,
2016, pp. 11:1–11:12.

[36] J. Yang and J. Leskovec, “Defining and evaluating network com-
munities based on ground-truth,” in Proceedings of the ACM
SIGKDD Workshop on Mining Data Semantics. ACM, 2012, pp.
3:1–3:8.

[37] J. Zhong and B. He, “Medusa: Simplified graph processing on
gpus,” IEEE Transactions on Parallel and Distributed Systems, vol. 25,
no. 6, pp. 1543–1552, 2013.

Wenyong Zhong is an Ph.D student at the Col-
lege of Computer Science and Electronic Engi-
neering, Hunan University, China. His research
interests are in heterogeneous computing sys-
tems and graph computing.

Jianhua Sun is an Associate Professor at the
College of Computer Science and Electronic
Engineering, Hunan University, China. She re-
ceived the Ph.D. degree in Computer Science
from Huazhong University of Science and Tech-
nology, China in 2005. Her research interests are
in security and operating systems. She has pub-
lished more than 70 papers in journals and con-
ferences, such as IEEE Transactions on Parallel
and Distributed Systems, IEEE Transactions on
Computers.

Hao Chen received the BS degree in chemical
engineering from Sichuan University, China, in
1998, and the PhD degree in computer science
from Huazhong University of Science and Tech-
nology, China in 2005. He is now a Professor
at the College of Computer Science and Elec-
tronic Engineering, Hunan University, China. His
current research interests include parallel and
distributed computing, operating systems, cloud
computing and systems security. He has pub-
lished more than 70 papers in journals and con-

ferences, such as IEEE Transactions on Parallel and Distributed Sys-
tems, IEEE Transactions on Computers, IPDPS, IWQoS, and ICPP. He
is a member of the IEEE and the ACM.

Jun Xiao was a Master student at the College of
Computer Science and Electronic Engineering,
Hunan University, China. Her research interests
are in GPGPU computing and graph computing
systems.

Zhiwen Chen is an Ph.D student at the College
of Computer Science and Electronic Engineer-
ing, Hunan University, China. His research in-
terests are in parallel computing and multi-core
systems.

Cheng Chang is working toward the PH.D.
degree at the School of Computer Science
and Electronic Engineering, Hunan University,
China. His research interests include distributed
storage system and virtualization. He is a stu-
dent member of the IEEE.

Xuanhua Shi Xuanhua Shi is a professor in Big
Data Technology and System Lab/ Service Com-
puting Technology and System Lab, Huazhong
University of Science and Technology (China).
He received his Ph.D. degree in Computer En-
gineering from Huazhong University of Science
and Technology (China) in 2005. From 2006, he
worked as an INRIA Post-Doc in PARIS team at
Rennes for one year. His current research inter-
ests focus on the cloud computing and big data
processing. He published over 70 peer-reviewed

publications, received research support from a variety of governmen-
tal and industrial organizations, such as National Science Foundation
of China, Ministry of Science and Technology, Ministry of Education,
European Union and so on. He has chaired several conferences and
workshops, and served on technical program committees of numerous
international conferences. He is amember of the IEEE and ACM, a
senior member of the CCF.

