
Coral: A Cloud-Backed Frugal File System
Cheng Chang, Student Member, IEEE, Jianhua Sun, and Hao Chen,Member, IEEE

Abstract—With simple access interfaces and flexible billing models, cloud storage has become an attractive solution to simplify the

storage management for both enterprises and individual users. However, traditional file systems with extensive optimizations for local

disk-based storage backend can not fully exploit the inherent features of the cloud to obtain desirable performance. In this paper, we

present the design, implementation, and evaluation of Coral, a cloud based file system that strikes a balance between performance and

monetary cost. Unlike previous studies that treat cloud storage as just a normal backend of existing networked file systems, Coral is

designed to address several key issues in optimizing cloud-based file systems such as the data layout, block management, and billing

model. With carefully designed data structures and algorithms, such as identifying semantically correlated data blocks, kd-tree based

caching policy with self-adaptive thrashing prevention, effective data layout, and optimal garbage collection, Coral achieves good

performance and cost savings under various workloads as demonstrated by extensive evaluations.

Index Terms—Cloud storage, file systems, cost optimization, cache, Billing model

Ç

1 INTRODUCTION

THE platform-as-a-service (PaaS) cloud storage has
become an infrastructure service of the Internet as a

promising way to simplify storage management for enter-
prises and individual users. Coupled with the increasing
demand for multi-device data synchronization and sharing,
it is emerging as a new paradigm that helps migrate storage
applications to the cloud. Due to its practical impact, signifi-
cant research endeavors have been undertaken to address
the problems in cloud storage based applications, such as
the security of storage outsourcing, data consistency, and
cost optimization.

A large body of work has advanced the state of art of
cloud storage research, including but not limited to the topics
mentioned above. In particular, a recent work [38] proposed
a cloud-based storage solution called Bluesky for the enter-
prise, which acts as a proxy to provide the illusion of a tradi-
tional file server and transfer the requests to the cloud via a
simple HTTP-based interface. By intelligently organizing
storage objects in a local cache, Bluesky serves write requests
in batches using a log-structured data store and merges read
requests using the range request feature in the HTTP proto-
col. In this way, many accesses to the remote storage can be
absorbed by the local cache, avoiding undue resource
consumption accordingly. As for cost optimization, FCFS
[35] proposed a frugal storagemodel optimized for scenarios
concerning multiple cloud storage services. Similar to local
hierarchical storage systems, FCFS integrates cloud services
with very different price structures. By dynamically

adapting the storage volume sizes of each service, FCFS
reduces the cost of operating a file system in the cloud.

In this paper, we present the design and implementation
of a cost-effective file system based on the PaaS cloud stor-
age. In contrast to current research activities that view cloud
service as a backend for network file systems and adopt
classical caching strategies and data block management
mechanisms, we argue that many inherent characteristics of
cloud storage, especially the billing model, should be
considered in order to improve resource utilization and
minimize monetary cost. Specifically, we exploit the seman-
tic correlation of data blocks, and propose a system design
that takes advantage of a smart local cache with effective
eviction policy and an efficient data layout approach. Evalu-
ations performed on our proof-of-concept implementation
demonstrate prominent savings in cost and gains in perfor-
mance as compared to the state of the art.

The main challenge in designing Coral is how to man-
age data blocks effectively. Comparing to the potentially
unlimited storage capacity in the cloud, the relatively
small cache on the client side may result in severe perfor-
mance degradation due to the low cache hit rate [26] and
the high latency of the WAN. Thus, a better cache design
is needed in order to save the operational cost for a cloud
based file system. To this end, we propose a cache evic-
tion mechanism based on kd-tree [19] that is organized by
considering the correlation metrics among data blocks.
The proposed mechanism guarantees high performance in
identifying and evicting cached content with flexible
range selection of data blocks. Furthermore, the data lay-
out of concrete objects in the cloud also reflects the seman-
tic correlation of data blocks, which has direct and
important implications for several optimizations in our
system, including data prefetching, cache thrashing
minimization, and garbage collection. Integrated with the
quantified model from analyzing the billing items of the
cloud service, Coral orchestrates the interfaces provided
by the cloud vendor and achieves improvement in both
execution time and monetary cost as compared to existing

� C. Chang is with the College of Computer Science and Electronic
Engineering, Hunan University, Changsha, Hunan, China.
E-mail: chengchang@aimlab.org.

� J. Sun and H. Chen are with the College of Computer Science and Electronic
Engineering, Hunan University, Changsha 410082, Hunan, China.
E-mail: {jhsun, haochen}@aimlab.org.

Manuscript received 4 Sept. 2014; revised 9 Feb. 2015; accepted 9 Apr. 2015.
Date of publication 19 Apr. 2015; date of current version 16 Mar. 2016.
Recommended for acceptance by G. Tan.
For information on obtaining reprints of this article, please send e-mail to:
reprints@ieee.org, and reference the Digital Object Identifier below.
Digital Object Identifier no. 10.1109/TPDS.2015.2424705

978 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 27, NO. 4, APRIL 2016

1045-9219� 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

systems. For example, Coral can save the monetary cost
by 28 percent averagely and achieve latency improvement
by up to 83 percent.

We make the following contributions.

� We extensively investigate the optimization of mone-
tary cost for PaaS cloud storage with specific billing
models, and consequently design optimal strategies
for data layout and garbage cleaning to avoid perfor-
mance degradation in WAN environments.

� We characterize the data block relationship using
high level semantics, and then use this information
to determine the composition and layout of storage
objects. Together with the kd-tree, we implement an
efficient cache management component with an
adaptive mechanism to alleviate cache thrashing.

� We implement a prototype system called Coral to
demonstrate the effectiveness of our proposed solu-
tions for cloud-based file systems. By comparing
with an representative log-structure based design,
we show that Coral achieves our design goals
through experiments with both simulation and real
scenario benchmarks.

2 BACKGROUND AND MOTIVATION

This section presents an overview about the cloud storage
and motivates the design choices behind Coral. We analyze
the differences between the cloud and local environment on
data block management. Using an illustrative example, we
highlight the design principles in our work.

2.1 Cloud Storage Model

In the present marketplace, cloud storage is a competitive
field that provides rich choices over the cloud stack, i.e.
infrastructure as a service (IaaS), PaaS, and software as a
service (SaaS). We focus on the PaaS cloud storage after
considering the data management granularity. In particular,
typical PaaS storage services exports simple interfaces such
as GET, PUT, LIST, and DELETE to manipulate data objects,
and the incurred costs due to these operations are tied to
different billing items. Table 1 lists the price of several major
cloud vendors [2], [8], [13].

In terms of data block management in file systems, exist-
ing solutions enable data to automatically move around in
the hierarchical storage stack, which incorporates fixed-size
storage medium with distinct performance/price ratio to
reduce data storage cost. In addition, an extensive body of
research on cache eviction policies, such as the least recently
used (LRU), coordinates the action of data blocks in order to
minimize overall cache miss rate. As the main issues in

block management, the caching algorithm and data organi-
zation underlie the fundamental principles in designing
storage systems. However, mainstream file systems are
designed for single devices or local area network (LAN)
environments. We argue that current block management
methods are not cost-effective for the cloud. Imagine that if
we simply adopt the conventional block management
approaches in the cloud, the fees charged for bandwidth
consumption and data transfer may be unacceptable for a
moderate-sized system, and most importantly, the prohibi-
tively high latency may render the system unusable.

2.2 Zooming in the Relationship of Data Blocks

Considering the inherent features of the cloud and the run-
time dynamics exhibited by data block accesses, we revisit
the relationship reflected by this dynamism from the follow-
ing three aspects. First, some files tend to be operated with
the same pattern such as source code files in a project (edit-
ing, debugging, and compiling), and consequently the
blocks belonging to different files may have a hidden link-
age. Second, by analyzing the access mode of blocks in the
same file, we can identify whether there exists a group of
blocks in a file with distinctive operations associated. Third,
similar to the existing temporal-locality based caching poli-
cies that strive to discover the most-likely-to-be-reused
data, the hotspots identified by analyzing the access pat-
terns should be leveraged to pinpoint the most perfor-
mance-critical data blocks.

To observe how the data block relationship are exhibited
in a real experiment that spans a relatively long period of
time, we ran a benchmark of compiling the Linux kernel
that incurs massive file read and write operations in the file
system. Our experiment simulates a functional cache with
fixed size, which evicts data blocks using the LRU policy
and loads data blocks to the cache when cache miss occurs.
Moreover, we record and calculate the variables that reflect
the aforementioned relationship for each block at eviction
time. We first analyze the benchmark results and then illus-
trate the selection of metrics.

Fig. 2 shows the diagram that represents the status of all
cached blocks at a specific time instant in 3d coordinates.
The notations are illustrated in Fig. 1, where raw metrics
(access time, count, and block size) are transformed and
normalized by mapping onto the interval [0, 1] as explained
later. The recorded information combined with the logs
exported by the cloud vendor makes it possible to derive
accurate block relationships and corresponding operations.
Three typical patterns are explained as follows. First, the
compiler creates temporary files such as .module_name.o.tmp
for each module, which are then transformed to files such

TABLE 1
Price Structure of Common PaaS Cloud Storage

Billing Items Amazon Rackspace Google
Storage ($/GB/Month) 0:095 0:100 0:085

Up 0 0 0
Transfer ($/GB) Down 0:120 0:120 0:120

Up 5� 10�6 0 10�5
Request ($/Req.) Down 4� 10�7 0 10�6

Fig. 1. Metrics and notations.

CHANG ET AL.: CORAL: A CLOUD-BACKED FRUGAL FILE SYSTEM 979

as module_name.o after compilation optimizations. There-
fore, the two types of files indicate a strong linkage. In the
diagram, the triangles represent the blocks for three mod-
ules and their temporary files (kprobes.o, inode.o, aes_generic.
o). Second, the diamond shaped blocks comprise three dif-
ferent modules (chainv.o, crypto_hash.o, eseqiv.o), which are
compiled perceivably at the same time. According to the
structure of Linux kernel source code, they belong to the
cryptography framework (under the crypto directory),
which is a relatively small subsystem. Hence, they are
manipulated within a short time window. Third, it can be
observed that the file built-in.o marked as circles is accessed
at one time (see the ti dimension), while its blocks exhibit
distinct behaviors in access time and hotness (see the tb
dimension, it varies from 0.5 to 0.7). By analyzing the make-
file, we found that during the compilation each subsystem
generates a built-in.o file by linking all individual object files.
This example illustrates that it may also be profitable to
utilize the relatedness of blocks within a single file

ti ¼ Ti � T0

Dt
;

tb ¼ Tb � T0

Dt
;

h ¼ 2

p
� tan �1 N

S
:

(1)

In cache management, block is the basic operational unit,
and each block belongs to a specific file pointed to by an
inode. Therefore, the last access time for inode (Ti) and block
(Tb) is selected to describe the correlation of blocks according
to the analysis in the above example, because the closer the
access time, the higher relevance the blocks may have. To
mask the difference of access frequency among diverse appli-
cations (e.g. benchmark applications typically issue frequent
requests during short timewindows, but normal applications
exhibit less such behaviors), we use relative time to represent
Ti and Tb as shown in Equation (1), where Dt is the time inter-
val measured between two events of cache eviction. Starting
from the latest eviction at time T0, we collect the statistics
about the last access time for each block and file in the cache,
and when a new eviction event is triggered, the relative time
can be calculated based on Equation (1). The third dimension
is about hotness of data blocks, which can be characterized by
block access count N and block size S. In order to avoid the
well-recognized cache pollution problem due to workloads

exhibiting weak locality [23], we use N=S to represent block
hotness. This metric is normalized using the nonlinear func-

tion y ¼ 2 tan �1x=p, which has the feature of enlarging
smaller x and making y approach 1 when x increases. In this
way, smaller x values should be more distinguishable when
they are used to describe the hotness metric. For example, for
a specific block (the block size s is fixed), the degree of differ-
ence between small N values (i.e. 3 and 10) would be more
significant than between large ones (i.e. 3,000 and 10,000),
because large N values will always fall into the category of
hot data (approaching 1) after the nonlinear transform.

2.3 Motivation

In fact, Fig. 2 is just a representative frame extracted from an
animation rendered by casting the traced data into a 3D
space during offline analysis. Moreover, we experimented
with a variety of workloads provided by the file system
benchmark tool Filebench [5], and observed invariable fea-
tures as indicated in the sampled frame above, by manually
examining the key frames in dynamically changing scenes.

Based on the above observations and analysis, we propose
to consider the following design principals when developing
data blockmanagement frameworks optimized for the cloud.

� Caching strategy should be re-evaluated. The cloud
storage is best characterized by its elastic capacity.
As the data volume increases and eventually far
exceeds the cache size, the cache hit rate might be
significantly reduced when using conventional local-
ity-based caching policies, such as LRU.

� Data layout of storage objects should be reconsidered
to take into account the access interface and pricing
model of the cloud. The cloud storage service masks
the diversity of needs by presenting a key-value store
abstraction to the user. Further, the billing model
provided by current cloud vendors is typically based
on storage capacity, access frequency, and data
transfer size. Consequently, an optimal data layout
would be beneficial to applications and end users in
terms of performance and cost respectively.

3 DESIGN AND IMPLEMENTATION

We start with analyzing the impact of the billing model on
design choices, and then present an overview of the system
architecture. Next, two core components, namely the caching

Fig. 2. Block relationship illustration.

980 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 27, NO. 4, APRIL 2016

policy and data layout are discussed before some implemen-
tation issues in constructing each component are presented.

3.1 Analyzing the Billing Model

We first discuss what comprises the cost of storing an object
in the cloud, and then analyze how each individual opera-
tion affects the overall cost.

3.1.1 Cost in the Object Life Cycle

For each object stored in the cloud, its life cycle starts from
the PUT operation and ends with the DELETE operation.
During this time period, the client performs GET operations
to retrieve the object multiple times as desired. Since there
is no an equivalent UPDATE operation, we have to upload
a new object and delete the old one when the content of an
object is partially modified. This also implies the beginning
of the life cycle for a new object. Additionally, we use a
built-in Database that acts as the information manager
instead of using the cloud storage metadata operation such
as LIST to query existing key-value pairs. Thus, the main
cost C for each object in its life cycle can be formulated as:

C ¼ mRd þRu þ uðt� t0ÞS þ umTd þ uTu; (2)

where Ru/Rd, Tu/Td is the bidirectional (up/down) unit
price for the request and data transfer respectively, and S is
the storage price. These uppercase parameters are provided
by cloud vendors. We therefore concentrate on how to
reduce the number of requests m, storage volume size u,
and storage duration Dt ¼ t� t0 in order to minimize C.

3.1.2 Effects of Operations on Monetary Cost

Despite the fact that the storage system may perform multi-
faceted operations on data, we only focus on optimizing the
parameters mentioned above and analyzing the indicated
operational cost. The operations we consider include cach-
ing, split, merge, and compression, which are derived from
the requirements of the caching policy and data layout, and
consequently have direct relation to the overall performance
and significant implication on monetary cost.

Caching and prefetching. According to Equation (2), both
effective caching and pre-fetching can reduce the number of
request m, indicating decreased cost of ðRd þ uTdÞ upon
each attempt to retrieve the object. Improving local cache hit
rate, on the other hand, can also improve response latency.
If objects to be accessed in the near future can be accurately
predicted, with pre-fetching we can download them in
advance to improve the cache hit ratio and save monetary
cost accordingly. On the premise of identifying correlation
metrics, it is helpful to allocate more computing resource to
collect the access patterns for improving the cache hit rate
and adapting to the bottleneck WAN link. As the key design
point, we elaborate the specifics in Section 3.4.

Split. As exemplified in Section 2.2, splitting the file and
storing each portion separately will increase the cost. How-
ever, in certain scenarios such as multi-threaded download-
ing, it would be beneficial to do so to accelerate the fetching
of object from the cloud, albeit at the expense of incurring
more GET requests. Assume that an object is split into p por-
tions, then the new cost can be formulated as:

Csplit ¼ pmRd þ pRu þ uDtS þ umTd þ uTu: (3)

For an object of size u, the difference between C and Csplit

is given in Equation (4), while Fig. 3a illustrates the splitting
process. We can see that when p ¼ 1 (namely no split), the
cost remains unchanged, and if p > 1, each portion raises
the cost by ðmRd þRuÞ

Csplit � C ¼ ðmRd þRuÞðp� 1Þ ; p > 1;
0 ; p ¼ 1:

�
(4)

Since the split operation leads to extra cost, our system
restrictedly employs it in metadata management when a
single file exceeds certain size.

Merge. Similar to split, suppose that a packed object con-
sists of q raw objects, one of which is of size u (see Fig. 3b).
The cost for this contained object is therefore

Cmerge ¼ mRd þ 1

q
Ru þ uDtmaxS þ umTd þ uTu;

comparing with (2), C � Cmerge can be computed as in
Formula (5):

ð1� 1
qÞRu þ uSðDt� DtmaxÞ ; q > 1;

0 ; q ¼ 1:

�
(5)

Because of the distinct life cycle for each component in a
packed object, the object stored in the cloud tends to com-
prise garbage data. To address this issue, a cleaning process
should be considered. Ideally, if all the constituent objects
have the same life span (i.e. Dt is equal to the maximum
Dtmax), the system can discard the whole orphaned object in
one transaction. Otherwise, special concerns are required
when considering the cost of storing and reclaiming garbage
data separately. With the growth of the number of objects
(namely increasing q), the cost reduction due to merging
multiple PUT requests can approach to Ru. For most cloud
vendors, Ru is a dozen times larger than Rd. That means
merging has more potential than caching/pre-fetching from
the aspect of saving cost. However, considering the unpre-
dictable nature of object life cycle and the complexity of gar-
bage collection, we conclude that effectively exploiting the
merging operation is pivotal for Coral, which is demon-
strated by our dedication to the design of caching policy
and data layout as discussed in the following sections.

Compression. Since the performance bottleneck in Coral is
shifted from the hard drive to WAN access, we have more
opportunities to employ complex computations such as
compression to optimize the storage cost. For example,
reducing the unit storage size in the cloud by compression
can save the cost by ðDtS þmTd þ TuÞ.

Fig. 3. Splitting and merging example.

CHANG ET AL.: CORAL: A CLOUD-BACKED FRUGAL FILE SYSTEM 981

3.2 Architectural Overview

Fig. 4 depicts the main components (shaded areas) in Coral.
The FUSE [6] layer acts as the interface to intercept read and
write requests, monitors the access patterns of applications,
and invokes other relevant modules. Specifically, data blocks
belonging to different files are stored in the Cache Directory
that interacts with the cloud storage backend,while themeta-
data such as the directory structure and file information is
maintained in the Database, which is periodically synchro-
nized to the cloud. This locally maintained database allows
for fast responses to operations that do not need to access file
content by avoiding network round trips. Furthermore, we
cache the most frequently used metadata of a file (inode) to
narrow the speed gap between the local file system and stor-
age backend. When the cache eviction is triggered, the Data
Selector searches for the most unwanted blocks with inherent
correlation, reflected by selected metrics and organizes them
into segments. After being compressed/encrypted, segments
are assembled into an object by the Layout Manager, and even-
tually uploaded to the cloud. In the event of cache miss or
garbage collection, Coral fetches data from the storage back-
end using HTTP range request, which enables the optimiza-
tion of downloading unrelated segments independently.
Next, unpacked/decrypted blocks are ingested into the
cache. The Cleaner performs the operation of garbage collec-
tion incurred by combining blocks with different life cycles
into the same segment. In the following, we describe each
component of Coral and cost optimization strategies in detail.

3.3 Metadata Database

Coral manages metadata using the relational database. As
shown in Fig. 4, four main entities compose the backbone of
metadata, including inodes, blocks, segments, and objects.
They are mapped to database tables directly. For instance,
inodes are stored in the table with schema inodes(id, uid, gid,
mode, mtime, atime, ctime, size, rdev, locked, refcount). In terms
of relations, the many-to-many relation requires additional
tables to describe, like inode_blocks(inodeid, blockno, blockid),
while for the many-to-one relation we can build a linkage
by id reference (e.g. the table segments(id, hash, size, offset,
activecount, objectid) with objectid). Lastly, some secondary
tables are defined for extra file attributes (e.g. symlink).

For modern database systems, this simple schema could
be handled effectively, absorbing substantial file system
operations locally. However, with an increasing working

set in Coral, a natural question is that whether the growth
of metadata size is acceptable in our system. Next, we
discuss the impact of the schema design on metadata capac-
ity for the entire storage system.

3.3.1 Capacity Estimation

Since the sizes of the majority of fields in the schema stay
fixed, the metadata size Sm can be estimated with the fol-
lowing intuitive approach. For each table j, we calculate Sm,
the sum of the multiplication of Bj (the size of all columns
in bytes), rj (the number of estimated rows), Ij (the database
index factor), and Cj (the compression factor), as expressed
in Equation (6). In practice, the storage engine of the data-
base tends to provide specific features or maintain internal
structures, changing the concrete database size. We can
introduce more correction coefficients for the equation to
improve the estimation

Sm ¼
X

j2tables
Bj � rj � Ij � Cj: (6)

Furthermore, the number of rows in tables have inherent
correlations. The number of rows in the table objects, for
example, is several orders of magnitude smaller than that of
the table inodes. Also, distinct row numbers among tables
reflect different types of workloads. We use the number of
rows g of table blocks and a coefficient vector V to represent
rj ¼ g � Vj of all tables, where Vblocks � 1. In this way, by
defining parameters V , we can obtain Sm with respect to g

in Equation (7). Accordingly, the capacity of the working set
is Sd ¼ g �M, where M denotes the average size of blocks.
We can finally deduce the relation between Sm and Sd as
shown in Equation (8)

Sm ¼ g
X

j2tables
Bj � Vj � Ij � Cj (7)

¼ Sd

M

X
j2tables

Bj � Vj � Ij � Cj: (8)

3.3.2 Case Study

Table 2 shows a case of estimation. To simplify, we just
present four main entities and increase the B slightly for
compensating unlisted ones. The selection of I and C is
based on the page level index and zlib based compression
[17] in the database. Under such parameters, we estimate
the working set capacity Sd (shaded cells) by setting
Sm ¼ 1GB. By varying V to simulate different workloads,
we can observe that the metadata size is reasonable in Coral.

Fig. 4. System architecture of Coral.

TABLE 2
A Case for Metadata Capacity Estimation (M = 32 KB)

982 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 27, NO. 4, APRIL 2016

For high aggregate storage requirement (e.g. enterprise
scenarios), the Database component can be independently
deployed to serve Terabyte level metadata management.
More detailed evaluation is presented in Section 4.2.3.

3.4 Caching Policy

The cache management plays a vital role in the whole
system. In this section, we clarify the rationales behind the
cache system design from two aspects. First, we discuss the
algorithmic designs that reflect our concerns of identifying
correlated blocks accurately and quickly to facilitate the
decision in evicting cached content. Second, we present a
self-adaptive approach to addressing the issue of cache
thrashing caused by the radical changes of access patterns.

3.4.1 Correlated Blocks and Data Structures

In Section 2.2, we have demonstrated the potential of
exploiting the inter-block relationship to optimize remote
data access from a macroscopic view. In this section, we
illustrate how the three concrete metrics (inode, block, and
hotness) can be used to represent the correlation in a 3D
space intuitively, and its superiority in improving cache
efficiency. The new strategy has three key advantages. First,
not only the hotness of data but the relationship implicitly
exhibited by block access patterns is utilized to make flexi-
ble decisions on swapping in/out data blocks, as compared
to the LRU policy. Second, the original block sequence gen-
erated by dividing files is rearranged according to the hot-
ness information, which provides hints for the data layout
engine (see Section 3.5). Third, we can balance the trade off
between local computation and remote access based on the
HTTP range parameter.

However, two major challenges in effectively selecting
and grouping blocks need special considerations. On one
hand, the established correlation may become invalidated
due to the dynamic nature of varying workload, and if not
appropriately handled, a phenomenon we call cache thrash-
ing may occur as detailed in Section 3.4.3. On the other
hand, although the latency of accessing the cloud can
partially mask the overhead incurred by a computation-
intensive caching algorithm (as compared to LRU), prompt
identification of correlated blocks is critical to the overall
performance due to the synchronous nature of file accesses.
To this end, We use a kd-tree data structure to maintain the
3D metrics space.

The kd-tree is useful for space partitioning and well-
suited for our needs. In particular, each non-leaf node
that stores 3D data can be thought of as implicitly generat-
ing a splitting hyperplane. By dividing the space into two
parts, known as half-spaces, the performance approaches
binary search in subtrees. Given a query key, we can
obtain corresponding neighbors in certain distance based
on fast tree traversal, fulfilling the task of finding corre-
lated blocks. The right part of Fig. 5 depicts a 3D space
and the relevant kd-tree.

3.4.2 Algorithmic Design

The caching policy is critical to system performance, and its
algorithmic design aims at exploiting the access patterns of
data blocks to reduce remote accesses to the cloud and better
utilize the cache space. To better understand the cache
subsystem, we use an illustrative example as shown in Fig. 5.
On the left part, blocks and metadata in the cache space are
represented by small squares at the middle layer, and the
arrowed lines marked with step indexes indicate the main
operations performed inmanaging the cache subsystem.

Step 1. We first discuss the procedure of evicting
cached blocks to make room for new data. As shown in
Algorithm 1, the metadata including the last access time
of blocks/inodes, the size and access counts for each
block in the cache space, is queried from the database
(step 1.1). Based on the relative time interval and nonlin-
ear transform, a kd-tree is generated to represent the met-
rics of data blocks in the 3D space. Generally, the kd-tree
is rebalanced to obtain a complete binary tree to maxi-
mize search efficiency. We use two parameters key and
dist to get the coldest blocks in the logical 3D space. The
candidate key selected (red spaures) from the kd-tree
reflects not only the hotness but the closeness of data
blocks. The parameter dist is used to determine the pack-
ing degree, a metric to optimize cache thrashing as
further discussed in Section 3.4.3. Since the cache subsys-
tem and other components heavily rely on querying the
database, we design an inode cache to accelerate database
access, serving the majority of requests.

Step 2. Commonly, when a block is selected as a candi-
date for eviction, it can be locked to prevent any further
accesses. However, the eviction operation consists of sev-
eral sub-steps such as metadata querying, data merging,
and encryption/compression, each demanding different

Fig. 5. The main steps performed by the caching subsystem.

CHANG ET AL.: CORAL: A CLOUD-BACKED FRUGAL FILE SYSTEM 983

access permissions on data blocks. Imposing exclusive
lock on each block during the whole operation is too con-
servative. For example, before encryption/compression,
read access to a block should be granted because there is
no conflicts with other operations. In this regard, we
employ fine-grained locking on each block to facilitate the
multi-threaded design at the backend, which can improve
the throughput of the cache.

Algorithm 1. Select (Part 1)

1: metrics set query dbðblocks in cacheÞ
2: ½min inode; delta inode� elapseðmetrics setÞ
3: ½min block; delta block� elapseðmetrics setÞ
4: key ð1; 1; 1Þ
5: tree init kdtreeðÞ
6: for allm 2 metrics set do
7: ti ðm:Ti�min inodeÞ=delta inode
8: tb ðm:Tb�min blockÞ=delta block
9: h 2� tan�1ðm:N=m:SÞ=p
10: point ðti; tb; hÞ
11: tree:addðpoint; iÞ
12: if key > point then
13: key point
14: end if
15: end for
16: if tree:isbalanceðÞ ¼ False then
17: tree:rebalanceðÞ
18: end if

"blocks to swapout tree:knnðkey;distÞ

Step 3. Algorithm 2 shows the cache replacement logic
in Coral. The data unit downloaded from the cloud is a
segment that contains data blocks with correlated rela-
tionship, and its structure is detailed in Section 3.5.
Segment based data transfer also implies that blocks
swapped in can act as pre-fetched data to improve the hit
rate of future requests. In addition, we use the feature of
HTTP range request (indicated by the parameters from
and to) to precisely control the amount of data remotely
fetched, which is marked by green squares for the cloud
storage layer in Fig. 5.

Algorithm 2. Fetch

1: block id fuse requestðÞ
2: if cache:hasðblock idÞ ¼ False then
3: ½object id; from; seg size� query dbðblock idÞ
4: to fromþ seg size
5: more MAX SIZE � ðcache:sizeðÞ þ seg sizeÞ
6: ifmore � 0 then
7: ... swap out ...
8: end if
9: segment request cloudðobject id; from; toÞ
10: blocks splitðsegmentÞ
11: for all item 2 blocks do
12: data decryptðitemÞ
13: block decompressðdataÞ
14: cache:setðblock id; blockÞ
15: end for
16: end if
17: requested block cache:getðblock idÞ

3.4.3 Resolving Cache Thrashing

Certain circumstances may undermine the caching mecha-
nism. When the access mode of the file system changes, the
established information for correlated data blocks may have
negative impact on performance if it is directly used for mak-
ing subsequent caching decisions. For example, the Linux ker-
nel compilation benchmark has two stages: file extraction and
building. The file extraction stage involves only write opera-
tions, and the collected access patterns in this stage provide
little help for the following one that exhibits read-write access
patterns. At the transitional period of radical workload
change, a phenomena called cache thrashing would occur if
the caching policy solely relies on the outdated block relation-
ship. To address this issue, we consider three access modes
(read-only, write-only, and read-write), and the transition
between them is traced at runtime to provide necessary hints
for accommodating the dynamically varyingworkloads.

Our solution depends on the parameter dist (see
Section 3.4.2) derived from the file access information
recorded at the FUSE layer, to adaptively control the pack-
ing of data blocks at runtime. More concretely, we use an
array of counters that composes a fixed-size window to
record the most-recent read/write requests. With this data
structure, we can accurately detect the transition of access
patterns, and then react with appropriate adjustment to the
key parameter dist.

As shown in Algorithm 3, we first determine the current
access mode by comparing the value calculated from the
read/write windows (variables read and write) with the last
mode recorded by last_mode (see lines 20-31). Next, the dis-
tance parameter (dist) that would guide the metadata search
in the kd-tree is derived based on the current system status
(see lines 33-42). In order to avoid cache thrashing caused
by oversized or undersized storage objects during mode
transitions, the function minimum_dist iteratively search the
kd-tree to obtain a desirable value for the distance metric.
Given that the mode transition typically lasts for certain
period of time instead of a transient event, and that transi-
tions may repeat frequently over a short time window, the
self-adaptation is run for a pre-defined duration as indi-
cated by the variable mode_delay. At last, it is worth noting
that the kd-tree based metadata management makes it
equally well suited for both the distance and neighbors
based search in the algorithmic design.

We use the Linux kernel compilation benchmark to
verify the effectiveness of our proposed strategy. Fig. 6

Fig. 6. Effect of the self-adaptive mechanism.

984 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 27, NO. 4, APRIL 2016

depicts the number of read/write requests issued to the
remote storage backend, which has marked impacts on
the cache performance and overall cost. Specifically, read
requests begin to dominate after the extraction of source
files (write-only). Without self-adaptive optimization, the
number of read requests issued to the cloud increases
significantly at the start of the transition of access mode
(at about the 17th second). In comparison, with the opti-
mization enabled, we can observe the smoothed variation
curve over the same time period. This strategy also works
for other workloads, although we only present the results
for the kernel compilation.

Algorithm 3. Select (Part 2)

19: ½read w;write w� fuse windowsðÞ
20: read sumðread wÞ;write sumðwrite wÞ
21: mode NO OPS

22: if read 6¼ 0 or write 6¼ 0 then

23: mode READ WRITE

24: if read ¼ 0 and read ¼ last read then

25: mode WRITE ONLY

26: end if

27: if write ¼ 0 and write ¼ last write then

28: mode READ ONLY

29: end if
30: end if
31: last read read; last write write
32: ifmode delay > 0 then
33: dist minimum distðÞ
34: mode delay mode delay� 1
35: else
36: if last mode ¼ mode then
37: dist normal distðÞ
38: else
39: mode delay DELAY COUNT
40: end if
41: end if
42: last mode mode
43: blocks to swapout tree:knnðkey; distÞ

3.5 Data Layout

Given that the design of the data layout is driven by the
requirements from several factors such as the storage and
transfer cost, the interoperability with the cache subsystem,
in this section, we first present how data blocks is organized
and linked together. Then, we address the issue of how to
reclaim the aged data in the cloud, which is an inevitable
side-effect due to the design trade-offs aforementioned.

3.5.1 Segment Structure

At the core of the caching policy is the capability of iden-
tifying correlated data blocks to be evicted from the
cache. To facilitate data management, the inherent rela-
tionship among data blocks indicated by the caching
subsystem should be reflected by how they are organized
and persisted in the cloud. The mainstream cloud services
do not specify the concrete format for storage objects, and
provide support for almost unlimited object size (from
1 KB to 5 TB in S3). And unlike the conventional storage

stack, existing objects in the cloud cannot be updated
directly without uploading new substitutions for old cop-
ies. Coupled with the design choices of the caching pol-
icy, this limitation motivates a design of data layout that
enables optimized read/write performance and reduced
cost incurred by data requests and garbage collection.

Fig. 7 illustrates the segment structure. First, the selected
blocks are arranged successively into two-dimensional lay-
out that exhibits the correlation of files (inode) and blocks.
This layout is merely a conceptual illustration, and we do
not physically maintain such a structure in the memory
because it will result in unnecessary memory copies when
these blocks are composed into segments. Second, blocks
belong to the same inode compose a single segment, and
are operated as an independent unit for compression and
encryption. Third, we assemble all the segments according
to the relationship implied by the dimension Ti to produce a
concrete storage object.

In this way, PUT requests (relatively expensive) are man-
aged at the granularity of objects, while cheaper and
frequent read (request and transfer) operations retrieve
data by segments. The distinguishable access granularity
employed in remote read/write request is helpful to save
cost according to the billing model (Section 2.1). We next
detail how to fetch data from the cloud.

3.5.2 Offset Remapping

Since the location information of data blocks would be
lost due to the operation of compression and encryption
performed on segments, we can not obtain the correct off-
sets in storage objects for the requested blocks directly.
We therefore remap the block offset to the segment offset
that is used as the range parameter of HTTP request.
Fig. 8 depicts two pairs of (offset, size) in a block and its
container segment respectively. These metadata are
stored in the database when the segment structure is con-
structed. For requesting the block with bid 15, we first
need to know which segment the requested block belongs
to. With the segment_id (20) acquired from querying
the database, another query is issued to obtain the offset
and size of the segment indicated by the segment_id, which
are then used to calculate the value of the byte range
for the Range header. Finally, after the specified segment
is downloaded from the cloud, the target blocks can be
extracted.

Fig. 7. Data layout of a concrete storage object.

CHANG ET AL.: CORAL: A CLOUD-BACKED FRUGAL FILE SYSTEM 985

3.5.3 Garbage Collection

The segment structure reflects the inherent relationship
among blocks, which is beneficial to the optimization of
data accesses by lowering the possibility of consolidating
completely independent blocks in one storage object. How-
ever, complex and dynamic runtime behaviors of applica-
tions inevitably induce distinct life cycle on data blocks, and
aged blocks should be discarded in a cost-effective way. For
example, blocks being updated (e.g. editing a document)
can not instantly replace the counterparts in the cloud,
instead we have to retain old copies because of the con-
strains of cloud service model. Aged data will incur not
only extra storage expense but also data transfer overhead
due to the defragmented segment structure. In the follow-
ing, we address this issue by answering when and how to
perform the operation of garbage cleaning.

Scheduling garbage collection should take into account
the cost involved in two aspects. On one hand, the storage
cost denoted by CstoreðtÞ will accumulate from each object
with aged blocks as shown in Equation (9). Inside an object,
C0i is determined by the size of all aged blocks sj and the dif-

ference between the time t0j when the block are marked as

deletable and the time t when the cleaner is started, as
shown in Equation (10). On the other hand, the cost
incurred by the cleaning operation itself (represented by
Cclean) should also be counted. To this end, we prove the
optimal time instance of issuing the cleaning operation as
shown in Theorem 1

Cstore ¼
X

i2objects
C0i (9)

¼
X

i2objects

X
j2aged

sj � ðt� t0j Þ: (10)

Theorem 1. The cleaning time t is optimal when the Eq. (11)
holds, which indicates that the cost caused by garbage collec-
tion only depends on CstoreðtÞ

CstoreðtÞ ¼ Cclean: (11)

Proof. The desirable cleaning scheme should minimize the
cost CstoreðtÞ þ Cclean. With the arithmetic and geometric
means inequality, we have

CstoreðtÞ þ Cclean � 2
ffi
CstoreðtÞCclean

p
:

The equality holds true if and only if there exists t such
that CstoreðtÞ ¼ Cclean, from which we can induce the

best time to start the cleaning operation. In addition, the

total cost 2
ffi
2CstoreðtÞ

p
is independent of any specific

cleaning algorithms. tu
Moreover, the equality also implies the opportunity of per-

forming direct and convenient comparison between different
cleaning approaches, since the cost of disposing aged data is
always computable.We next analyze two particular cases.

In Coral, we implement the cleaner as an integrated
component of our system that interacts with the block
management and caching subsystem to fulfill the task of
space reclamation. The Cclean can be calculated using
Equation (12), where Td, Ru, and Rd denote the unit price
defined in Section 3.1.1, and Si represents the object size.
Assume we have an object to edit, after downloading the
corresponding segments without aged blocks (range to
the greatest extent) by n requests, the cleaner reconstructs
and then uploads the new objects to the cloud at certain
time. The upstream transfer and delete operation in
the cloud are free. According to Theorem 1, the cleaning
operation will be launched at the time when Cstore ¼
Cclean. We will evaluate garbage cleaning in Section 4.3.3

Cclean ¼
X

i2objects
C00i

¼
X

i2objects
ðTd � ðSi �

X
j2aged

sjÞ þ nRd þRuÞ:
(12)

Secondly, It is possible to locate the cleaner at the same
place as the storage backend, and the main benefit of this
option is the intra-datacenter data access that can expedite
data processing and avoid the extra cost of upstream and
downstream data transfer. Assume that the cleaner is dele-
gated to a compute node in the cloud such as the EC2 [1].
Then we have

Cclean ¼W � t0;

where W denotes the unit price of the compute node, and t0

is the execution time of the cleaning operation depending
on the volume of aged data. In this case, we can also start
the cleaning routine under the guidance of Theorem 1.
Therefore, distinct cleaners become comparable via Cstore.
We plan to incorporate the advantages of the standalone
cleaner design in future work.

3.6 Implementation Issues

Our current implementation of Coral contains approxi-
mately 7,500 lines of Python code, and a few hundred lines
of C++ in performance-critical components, including the
kd-tree selector and delta-dump/restore functions for the
database. Coral is built on top of FUSE that supports stan-
dard Unix file system features, and uses the sqlite database
to maintain metadata. With an extensible architecture, Coral
provides support for multiple storage backends including
Amazon S3 (or compatible protocols), Google Cloud Stor-
age, and local disk, and several representative caching
schemes are implemented for comparison. All data is com-
pressed using the LZMA algorithm [10] and encrypted
using AES [7] with a 256-bit key.

Data consistency. Current cloud storage systems typically
sacrifice strong consistency in favor of performance and

Fig. 8. Offset remapping for block request.

986 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 27, NO. 4, APRIL 2016

availability, as a result, only eventual consistency is guaran-
teed. Under this model, operations such as read-after-write
may occasionally fail, and the responsibility to tolerate such
failures is imposed on the developers consequently. Other
client situations such as machine crashing also might lead to
data inconsistency. To address this issue, we assign each
block or object an ID that is automatically increased when it
is updated. Further, the metadata (database files) is associ-
ated with a version number, and when the two version num-
bers do not match, a series of measures would be conducted
to ensure data consistency. Coral uses the latest-version-
wins mechanism to resolve conflicts based on version num-
bers, which means the newest version is valid by default.
Meanwhile, several old versions are also maintained tempo-
rarily, providing the opportunity of rolling back to a specific
version selected by the user.

Snapshot. In Coral, the creation of snapshot is straightfor-
ward and incurs little overhead, since the metadata, includ-
ing the information about files and the directory structure,
are recorded in the database. We can conveniently preserve
the state of the entire file system at any time using a mini-
mum amount of storage space.

4 EVALUATION

In this section, we evaluate the Coral prototype implemen-
tation with macro- and micro-benchmarks. Our experi-
ments were conducted in a cross-continent environment. In
addition to perform the comparison with the state-of-the-art
using real world applications and synthetic benchmarks,
we also investigate the performance advantage of our cach-
ing policy and the effect of garbage collection on run time
and storage cost.

4.1 Setup

We used the Linode 2048 Plan (at the Japan datacenter) [9]
running Ubuntu 12.04 LTS as the client to launch the bench-
marks. The instance configurationwas a 64-bit platformwith
2 GB RAM, 2.27 GHz Intel Xeon L5520 (quad-core) process-
ors, and 80 GB storage. Our experimental measurements
were performed with Amazon S3 storage backend in two
regions, N. Virginia (US-East) and N. California (US-West).
For testing the network connectivity between Linode (Japan)
and Amazon (US), we used an EC2 node located at the same
datacenter as S3 to run iperf. The average bandwidth between
the client and S3 in US-West and US-East reached 21 and 34
Mbps respectively.

Our benchmarks include compiling the Linux kernel and
generating synthetic workloads with Filebench. The work-
loads produced by the first one contain extracting the source
code of Linux kernel 3.4.4, which consists of roughly 40,000
files totaling 450 MB (write-only workload), calculating the
checksum of all these source files (read-only workload), and
building the kernel with the default configuration and j4 flag
for parallel compilation (read-write workload). Filebench
has various prepackaged workload personalities, among
which fileserver, webserver, varmail and netsfs are used.

4.2 Macro-Benchmarks

We first examine our goals on optimizing monetary cost and
latency, by comparing with Bluesky that is characterized by

a log-structured data layout with an LRU caching policy. In
Bluesky, write requests are collected into a fixed size
segment (4MB).

4.2.1 Cost

Cloud storage providers typically charge customers over
a monthly billing cycle. In our scenario, the storage cost
is relatively small because of the limited time window of
running the experiments. However, the cost caused by
data transfers and requests is much more prominent in
file system workloads. Thus, we only analyze the fees
actually charged for the later two metrics, excluding the
storage cost. To guarantee accuracy, our analysis is based
on S3’s internal logging tool that generates the access log
and stores the log files as normal storage objects asyn-
chronously in the cloud. The prices in October 2013 from
Amazon S3 US-East region are: $0.095/GB per month,
$0.12/GB transfer out, and 0.005 per 10,000 GET or 1,000
PUT operations (base prices).

Fig. 9 compares the monetary cost between Bluesky and
Coral. We consider three billing items: PUT/GET request
and outbound data transfer from the cloud. The average
improvement with Coral is about 28 percent over all applica-
tions, among which the fileserver and kernel complication
achieve better cost savings, whereas in scenarios where read
request dominates such as webserver, varmail, and netsfs,
Coral exhibits similar results as Bluesky. Moreover, we can
observe the increased cost of two billing items. First, the data
transfer cost in Coral is more prominent due to the prefetch-
ing of interrelated data blocks when downloading data from
the cloud (see the webserver case). Second, compared with
the fixed-size storage objects as in Bluesky, our system gener-
ates variable-size objects due to the need of tracking the
mode switches, which leads to the increase of PUT requests.
Even with the increase of the cost of data transfer and PUT
requests, the total cost of Coral is lower than Bluesky across
all benchmarks because of the significantly reduced GET
requests. We are investigating new ways to further reduce
the cost incurred by data transfer and PUT requests.

4.2.2 Impact of Latency

We use the same benchmarks as the above to underscore the
impact latency can have on file system performance. Partic-
ularly, measuring the kernel compilation time is decom-
posed into three steps (unpack, checksum, and build) to
reveal the results for distinct access modes. We ran this
experiment against both the local and cloud storage.

Fig. 9. Evaluation results of monetary cost.

CHANG ET AL.: CORAL: A CLOUD-BACKED FRUGAL FILE SYSTEM 987

Fig. 10 shows the comparison of normalized running
times, which is more intuitive than the illustration of plot-
ting the absolute timing results that exhibit relatively large
variation for different workloads. So, a 50:50 split means
equal times for Coral and Bluesky. For local storage, Blue-
sky consumes less time (about 26 percent averagely) across
all benchmarks. In comparison, Coral performs better than
Bluesky with the cloud storage as backend, and the average
improvements are about 83 and 69 percent for the two back-
ends (US-West and US-East) respectively. The log-struc-
tured design in Bluesky originally aims to improve the
write performance of hard disk by organizing random
writes sequentially with a log. However, this advantage
may have limited impact on performance improvement for
cloud-backed file systems, because the underlying perfor-
mance-critical factors have changed. As evidenced by the
comparison between the two geographical locations, with
better network connectivity to our client machine, the US-
West region has shown better results. Moreover, for Coral,
benchmarks dominated by a single operation (read or write)
such as netsfs, varmail, webserver, checksum, and unpack
exhibit better performance than others that involve more
access mode switches, we attribute this to the overhead
incurred by the self-adaptive intervention.

4.2.3 Large Workload

Existing studies [37], [39] found that the average amount
of accessed data per day is only 10 percent of the total
dataset in a typical networked file system, indicating that
Coral can serve hundreds TB data with a tens TB local
cache. In this section, we evaluate the performance of
Coral under large workload. To this end, we use the
fileserver personality in Filebench to simulate operations
on a relatively large dataset including create, delete,
append, and read operations on files and directories. This
is similar to the workloads generated by SPECsfs as used
in Bluesky. We set the cache size to 10 GB with the stor-
age backend at S3 US-West, and use operations per
second (ops/s) as the metric to compare the performance
between Coral and Bluesky. In addition, the capacity of
the metadata database is also evaluated to validate our
theoretical analysis. As shown in Fig. 11, with the
increasing of dataset size, we can observe the decreasing
performance for both Coral and Bluesky because the
fixed-size cache necessitates more remote data accesses.
But the performance of Coral stays better than Bluesky
across all sizes of dataset. Notably, the volume of meta-
data produced by this large workload is at roughly the

same level as the theoretical estimation in Section 3.3.
According to the results, we believe our system can scale
to large workloads. In real enterprise scenarios, a dedi-
cated high-performance machine can be deployed to man-
age even higher volume metadata.

4.3 Micro-Benchmarks

In this section, we first demonstrate the superiority of our
caching strategy compared to the traditional LRU policy,
and then present the evaluation on garbage collection.

4.3.1 Cache Performance

This experiment was run with cache capacity varying from
2 to 20 percent of the dataset size, to evaluate how the cache
hit ratio scales under the two caching policies.

Fig. 12 illustrates the cache hit ratio of LRU and KD over
the four Filebench applications and Linux kernel compila-
tion. For all benchmarks, the hit ratio increases with the
increase of cache capacity. In particular, the cache hit ratio
of netsfs and varmail is higher (over 60 percent) than that of
the webserver, fileserver and Linux, because of the rela-
tively more randomness in I/O requests. By comparing the
variations of cache hit ratio of KD and LRU policy, we can
observe that the KD policy shows more stable fluctuation
across all cache sizes. For example, in the case of netsfs, the
hit ratio of LRU ranges from 64 to 88 percent, while with
KD it varies from 84 to 92 percent, showing smaller

Fig. 10. Excution time comparison under various workloads. Fig. 11. Operations per second of distinct dataset sizes.

Fig. 12. Cache hit ratios of distinct workloads and datasets.

988 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 27, NO. 4, APRIL 2016

magnitude of fluctuation. Other benchmarks exhibit similar
trends. This stability has important implications for cloud-
backed file systems, because of the potentially unlimited
cloud storage that far exceeds the cache size on the client
side. Taking advantage of the data block relationship, as
expected, the KD policy achieves higher hit ratio than LRU
for most cache sizes. However, diminishing returns of the
KD policy are observed for certain workloads with the
increasing of cache size, because of the decreased
exploitable interrelated data blocks.

4.3.2 Impact of Individual Metrics on Cache

Performance

In this section, we evaluate the impact of individual metrics
(tb; ti, and h) on cache hit ratio, and use the same workloads
and configurations as the above section. In addition, we
also duplicate the results in Fig. 12 for intuitive comparison.
As shown in Fig. 13, the KD policy performs better than any
single metric. We analyze the performance of individual
metrics as follows. First, the metric tb only contains the
information of the time dimension (no frequency) in LRU,
thus exhibiting worse cache hit ratios than LRU. Second, for
the metric ti that is similar to file-based (not block) LRU pol-
icy without considering the frequency, we can observe simi-
lar performance results between ti and tb for workloads
(e.g. webserver and varmail) whose average file size
approximates to the block size. While for other workloads
with large amount of blocks per file, the cache hit ratios of ti
are lower than that of tb, because of behavioral diversity
among files and blocks. Third, when using the hotness met-
ric h, the performance varies between LRU and ti. In sum-
mary, the KD policy achieves better cache performance by
incorporating the advantages of multi-dimension informa-
tion. In addition to cache performance, the metrics such as
ti also have implications on choosing parameters for the lay-
out of storage objects.

4.3.3 Cleaning

It is difficult to directly evaluate and compare different
garbage cleaning designs. First, distinct cleaning approaches

typically involve complex interactions with other modules
in the system. For example, Bluesky use an Amazon EC2
node to collect garbage data. Second, calculating the cleaning
cost requires a non-trivial amount of garbage data generated
by delete/edit operations, but our current workloads contain
too few such operations to produce the desired experimental
dataset. However, as demonstrated by the theoretical analy-
sis in Section 3.5.3, we canmeasure the cost of garbage collec-
tion indirectly based on the storage cost of garbage data.
Consequently, we use a synthetic workload generated by
Filebench to conduct the following analysis. The file system
was populated with 10 file sets (a group of related files), each
of which contains eight files totaling 64 MB of data. The
benchmark rewrites 50 percent of data (320 MB) with 32 KB
I/O block in amulti-threaded environment.

Fig. 14 depicts the amount of deleted data during the
experiment. We use the statistics collected from the file
system layer as the baseline (marked as FS), because the
file system will perform the same set of operations given
the same random seed no matter what caching policy is
employed. After the initial stage that populates the file
system, the KD and LRU policy exhibit dramatically dif-
ferent behaviors. Since the KD strategy exploits the inher-
ent relationship among data blocks, a significant amount
of delete operations are absorbed by the cache, leading to
sustained improvement of greater than 60 percent against
the LRU policy. More data deleted in the cache means
less garbage data stored in the cloud. According to our
theoretical analysis, this also implies the reduced cost of
performing the cleaning operation in the cloud (less data
repackage plus less DELETE requests). Our design princi-
ple focuses on eliminating the garbage data stored in the
cloud as much as possible, instead of relying on a compli-
cated garbage collection mechanism.

Fig. 15 depicts the varying quantity of garbage data
produced in our experiment. Without the mechanism of
reclaiming aged data, the total amount of garbage data
increases linearly and reaches about 30 MB at the end. In
stark comparison, when the cleaner is enabled, the garbage

Fig. 13. Cache hit ratios for individual metrics.

Fig. 14. Comparison of delete requests issued to the cloud.

Fig. 15. Effect of garbage collection.

CHANG ET AL.: CORAL: A CLOUD-BACKED FRUGAL FILE SYSTEM 989

data retained in the cloud is significantly reduced and never
exceeds 10 MB. We can observe that the four green triangles
have approximately the same size and shape, indicating that
the cleaning time is optimally scheduled to minimize the
overall cost as discussed in Section 3.5.3. In addition, not all
orphaned data are reclaimed each time, which can be
inferred from the figure where the green triangular regions
are not entirely enclosed. This is because for some cases, live
data blocks constitute a dominant part of the storage objects,
and it is not economical to remotelymanipulate these objects.

5 RELATED WORK

Cloud storage driven by the availability of commodity
services from Amazon S3 and other providers has
attracted wide interests in both academia and industry.
As a new option of storage backend, it greatly eases
storage management but brings new challenges as well.
The work in this paper reflects our endeavors to address
the interrelated issues such as caching strategy, object
organization, and monetary cost optimization in design-
ing a cloud based file system.

Cloud based storage. For the service provider, Depot [32]
considers safety and liveness guarantees based on distrib-
uted sets of untrusted servers. For safety and security rea-
sons, SafeStore [27], DepSky [20] and SCFS [21] operate on
diverse storage service providers to prevent cloud vendor
lock-in. Recently, Bluesky [38] presents a cloud based stor-
age proxy for enterprise environments. With the log-struc-
tured [36] data layout, the proxy can absorb massive remote
write requests to achieve high-throughput. However, the
design proposed by Blueksy does not consider the billing
model that is a major distinct feature compared to classical
storage model. Exemplar open source projects like S3FS
[14], S3QL [15], and SDFS [12] provide the file system inter-
face for the cloud backend like Amazon S3. Similar to Blue-
sky, commercial systems such as Cirtas [3], Nasuni [11], and
TwinStrata [16] act as cloud storage gateways for enter-
prises rather than personal users.

Metadata. In [18], the authors reported metadata charac-
teristics over 60 K PC file systems in a large corporation dur-
ing five-year period. The changes in file size, file type, file
age, storage capacity and consumption etc. motivated the
database design for metadata management in our work.
Also, the study [34] analyzed the whole-file versus block-
level elimination of redundancy, which reflects the necessity
of block-level deduplication. A recent work [25] showed the
behaviors of a popular personal cloud storage service Drop-
box [4]. One of the main findings is that the performance of
Dropbox is driven by the distance between clients and stor-
age data centers. That corresponds to our design principle
on bottleneck shifting to the network.

Storage management. To close the widening semantic gap
between computer system and storage system, [33] proposed
an classification architecture for disk I/O. The same class of
objects (e.g., large files, metedata, and small files) are
combined according to the caching policy, which boosts end-
to-end performance. Similarly, BORG [22] performs
automatic block reorganization based on observed I/O
workloads, including non-uniform access frequency distri-
bution, temporal locality, and partial determinism in non-

sequential accesses. With reducing the monetary cost as one
of the major concerns, we exploit the semantic information
among data blocks in all aspects when designing Coral.

Hystor [23] describes a high-performance hybrid storage
system with solid state drive (SSD) based on active monitor-
ing of IO access patterns at runtime. HRO [31] treats SSD as
a bypassable cache to hard disks. By estimating the perfor-
mance benefits based on history access patterns, the system
can maximize the utilization of SSD.

Cache policy. Beyond typical LRU mechanism, SEER [28]
improves cache performance using the sequence of file
accesses for measuring the relationship among files. The fol-
low-up study [29] discussed various semantic distances of
files and designed an agglomerative algorithm in discon-
nected hoarding scenario. Also, [30] proposed a two-fold
mining method of block correlation mainly based on fre-
quent sequences. In contrast, Coral describes additional
eviction basis (besides hotness of data) with temporal-based
metric of the file and block, which is simple and easy to
measure in file system at runtime with cloud backend
ranther than offline mining.

Cost optimization. Few research has specifically studied
the issue of monetary cost optimization for the cloud. Chen
[24] evaluate cloud storage costs from economic perspec-
tive, which is at more abstract level and may not be suitable
for complex usage scenarios. In [35], the authors present a
system called FCFS with the main focus on the monetary
cost reduction for cloud based file systems. However, this
work focuses on the optimization for scenarios integrating
multiple cloud storage services with distinct cost and
performance characteristics. In fact, Coral is complementary
to FCFS since optimizing the cost for a single cloud storage
service can also benefit systems like FCFS.

6 CONCLUSIONS AND FUTURE WORK

This paper presents the design, implementation and evalua-
tion of Coral, a cloud based file system specifically designed
for cloud environments in which improving performance
and monetary cost are both principally important for end
users. With the efficient data structures and algorithmic
designs, Coral achieves our goals of high performance and
cost-effective. In the future, we plan to investigate new
ways to further reduce the storage cost. For example, using
byte-addressable compression algorithms, we can precisely
control how much data the client needs to download
instead of fetching a complete segment each time.

ACKNOWLEDGMENTS

This research was supported in part by the National Natural
Science Foundation of China under grants 61272190
and 61173166, the Program for New Century Excellent
Talents in University, and the Fundamental Research
Funds for the Central Universities of China. Jianhua Sun is
the corresponding author.

REFERENCES

[1] Amazon EC2 Cloud [Online]. Available: http://aws.amazon.
com/ec2/, 2015.

[2] Amazon Simple Storage Service (S3) [Online]. Available: http://
aws.amazon.com/s3/, 2015.

990 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 27, NO. 4, APRIL 2016

[3] Cirtas Bluejet Cloud Storage Controllers [Online]. Available:
http://www.cirtas.com/, 2013.

[4] Dropbox [Online]. Available: http://www.dropbox.com/, 2015.
[5] Filebench [Online]. Available: http://filebench.sourceforge.net/,

2015.
[6] Filesystem in Userspace [Online]. Available: http://fuse.

sourceforge.net/, 2015.
[7] FIPS PUB 197, Advanced Encryption Standard (AES) [Online].

Available: http://csrc.nist.gov/publications/fips/fips197/
fips-197.pdf, 2014.

[8] Google Cloud Storage [Online]. Available: https://cloud.google.
com/products/cloud-storage, 2015.

[9] Linode VPS [Online]. Available: http://www.linode.com/, 2015.
[10] LZMA Compression Algorithm [Online]. Available: http://

www.7-zip.org/sdk.html, 2015.
[11] Nasuni: The Gateway to Cloud Storage [Online]. Available:

http://www.nasuni.com/, 2015.
[12] OpenDudep [Online]. Available: http://www.opendedup.org/,

2015.
[13] Rackspace Cloud Files [Online]. Available: http://www.rackspace.

com/cloud/files/, 2015.
[14] s3fs [Online]. Available: https://code.google.com/p/s3fs/, 2014.
[15] S3QL [Online]. Available: https://code.google.com/p/s3ql/,

2013.
[16] TwinStrata [Online]. Available: http://www.twinstrata.com/,

2013.
[17] ZIPVFS: An SQLite Extension For Compressed Read/Write Data-

bases [Online]. Available: http://www.sqlite.org/zipvfs, 2015.
[18] N. Agrawal, W. J. Bolosky, J. R. Douceur, and J. R. Lorch, “A five-

year study of file-system metadata,” in Proc. 7th Conf. File Storage
Technol., 2007, pp. 31–45.

[19] J. L. Bentley, “Multidimensional binary search trees used for asso-
ciative searching,” Commun. ACM, vol. 18, no. 9, pp. 509–517,
1975.

[20] A. N. Bessani, M. P. Correia, B. Quaresma, F. Andr�e and P. Sousa,
“DepSky: Dependable and decure storage in a cloud-of-clouds,”
in Proc. 6th Conf. Comput. Syst., 2011, pp. 31–46.

[21] A. N. Bessani, R. Mendes, T. Oliveira, N. F. Neves, M. Correia, M.
Pasin, and P. Ver�ıssimo, “SCFS: A shared cloud-backed file sys-
tem,” in Proc. USENIX Annu. Tech. Conf., 2014, pp. 169–180.

[22] M. Bhadkamkar, J. Guerra, L. Useche, S. Burnett, J. Liptak, R.
Rangaswami, and V. Hristidis, “BORG: Block-reorganization for
self-optimizing storage systems,” in Proc. 7th Conf. File Storage
Technol., 2009, pp. 183–196.

[23] F. Chen, D. A. Koufaty, and X. Z. 0001, “Hystor: Making the best
use of solid state drives in high performance storage systems,” in
Proc. Int. Conf. Supercomput., 2011, pp. 22–32.

[24] Y. Chen and R. Sion, “To cloud or not to cloud?: musings on costs
and viability,” in Proc. ACM Symp. Cloud Comput., 2011, pp. 29–7.

[25] I. Drago, M. Mellia, M. M. Munaf�o, A. Sperotto, R. Sadre, and A.
Pras, “Inside dropbox: Understanding personal cloud storage
services,” in Proc. Internet Meas. Conf., 2012, pp. 481–494.

[26] S. Jiang, F. Chen, and X. Zhang, “CLOCK-Pro: An effective
improvement of the CLOCK replacement,” in Proc. Annu. Conf.
USENIX Annu. Tech. Conf., Apr. 2005, pp. 35–35.

[27] R. Kotla, L. Alvisi, and M. Dahlin, “SafeStore: A durable and prac-
tical storage system,” in Proc. USENIX Annu. Tech. Conf., 2007,
pp. 129–142 .

[28] G. H. Kuenning, “The design of the SEER predictive caching sys-
tem,” in Proc. Workshop Mobile Comput. Syst. Appl., 1994, pp. 37–43.

[29] G. H. Kuenning and G. J. Popek, “Automated hoarding for
mobile computers,” ACM SIGOPS Oper. Syst. Rev., vol. 31,
no. 5, pp. 264–275, Dec. 1997.

[30] Z. Li, Z. Chen, and Y. Zhou, “Mining block correlations to
improve storage performance,” ACM Trans. Storage, vol. 1,
no. 2, pp. 213–245, May 2005.

[31] L. Lin, Y. Zhu, J. Yue, Z. Cai, and B. Segee, “Hot random off-load-
ing: A hybrid storage system with dynamic data migration,” in
Proc. Simulation Comput. Telecommun. Syst., pp. 318–325.

[32] P. Mahajan, S. Setty, S. Lee, A. Clement, L. Alvisi, M. Dahlin, and
M. Walfish, “Depot: Cloud storage with minimal trust,” ACM
Trans. Comput. Syst., vol. 29, no. 4, pp. 1–38, Dec. 2011.

[33] M. Mesnier, F. Chen, T. Luo, and J. B. Akers, “Differentiated stor-
age services,” in Proc. 23rd ACM Symp. Oper. Syst. Principles, 2011,
pp. 57–70.

[34] D. T. Meyer and W. J. Bolosky, “A study of practical
deduplication,” ACM Trans. Storage, vol. 7, no. 4, pp. 14–20, 2012.

[35] K. P. N. Puttaswamy, T. Nandagopal, and M. S. Kodialam,
“Frugal storage for cloud file systems,” in Proc. 7th ACM Eur.
Conf. Comput. Syst., 2012, pp. 71–84.

[36] M. Rosenblum and J. K. Ousterhout, “The design and implemen-
tation of a log-structured file system,” ACM Trans. Comput. Syst.,
vol. 10, no. 1, pp. 26–52, 1992.

[37] C. Ruemmler and J. Wilkes, “A trace-driven analysis of disk
working set sizes,” HP Labs, Palo Alto, CA, USA, HP Tech.
Rep. HPL-93-23, 1993.

[38] M. Vrable, S. Savage, and G. M. Voelker, “BlueSky: A cloud-
backed file system for the enterprise,” in Proc. 7th Conf. File Storage
Technol., 2012, p. 19.

[39] T. M. Wong and J. Wilkes, “My cache or yours? making storage
more exclusive,” in Proc. General Track Annu. Conf. USENIX Annu.
Tech. Conf., 2002, pp. 161–175.

Cheng Chang is currently working toward the
PhD degree in the College of Computer Science
and Electronic Engineering, Hunan University,
China. His research interests include distributed
storage system and virtualization. He is a student
member of the IEEE.

Jianhua Sun received the PhD degree in com-
puter science from the Huazhong University of
Science and Technology, China, in 2005. She
is an associate professor in the College of
Computer Science and Electronic Engineering,
Hunan University, China. Her research inter-
ests are in security and operating systems.
She has published more than 50 papers in jour-
nals and conferences, such as the IEEE Trans-
actions on Parallel and Distributed Systems
and the IEEE Transactions on Computers.

Hao Chen received the BS degree in chemical
engineering from Sichuan University, China, in
1998, and the PhD degree in computer science
from Huazhong University of Science and Tech-
nology, China in 2005. He is currently a professor
in the College of Computer Science and Elec-
tronic Engineering, Hunan University, China. His
current research interests include parallel and
distributed computing, operating systems, cloud
computing and systems security. He published
more than 60 papers in journals and conferences,

such as the IEEE Transactions on Parallel and Distributed Systems,
IEEE Transactions on Computers, IPDPS, IWQoS, HiPC, and CCGrid.
He is a member of the IEEE and the ACM.

" For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

CHANG ET AL.: CORAL: A CLOUD-BACKED FRUGAL FILE SYSTEM 991

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

