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Abstract—Despite the advances in high performance interdomain communications for virtual machines (VM), data intensive

applications developed for VMs based on the traditional remote procedure call (RPC) mechanism still suffer from performance

degradation due to the inherent inefficiency of data serialization/deserilization operations. This paper presents VMRPC, a lightweight

RPC framework specifically designed for VMs that leverages the heap and stack sharing mechanism to circumvent unnecessary data

copy and serialization/deserilization. Our evaluation shows that the performance of VMRPC is an order of magnitude better than

traditional RPC systems and existing alternative interdomain communication optimization systems. The evaluation on a VMRPC-

enhanced networked file system across a varied range of benchmarks further reveals the competitiveness of VMRPC in IO-intensive

applications.

Index Terms—Remote procedure call (RPC), virtual machine, shared memory, interdomain communication
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1 INTRODUCTION

THE virtual machine technology offers a number of
benefits in the design and implementation of systems

software. These include the ability of making more efficient
use of hardware resources and minimizing the network
overhead by colocating multiple modules acting on the same
data on the same physical machine. Recently, a large class of
communication-intensive distributed applications and soft-
ware components have been ported to virtual machines,
such as high-performance storage systems, network-router
systems, and graphics rendering systems [17]. These
applications demand a custom communication protocol.
Although the researchers have developed high-performance
solutions for these applications, there is still room to further
improve the performance of virtual-machine-based applica-
tions as will be introduced in this paper.

In our previous work vCUDA [18], we also faced
performance issues. The study involved building a virtual
Compute Unified Device Architecture (CUDA) system in
virtual machine monitors (VMM). The task of the virtual
CUDA system is to intercept the normal API flow of the
CUDA applications in VMs and redirect them to a privileged
VM. Redirection was realized by using a traditional RPC
system XMLRPC [23]. However, we found that XMLRPC
caused severe performance degradation in VMMs, which
motivated us to develop a high-throughput interdomain
RPC system for data-intensive applications like vCUDA.

In this paper, we present the design and implementation
of a new RPC system, Virtual Machine Remote Procedure

Call (VMRPC). The main goal of VMRPC is to provide
extremely low latency and high throughput between VMs

in the same VMM. VMRPC combines the strengths of the

local RPC optimization and interdomain communication-
optimization techniques to avoid the performance issues

that stem from the OS or VMM. Zero copy is also achieved

in VMRPC, so that there is no user level or kernel level
data copy as in normal RPC operations. Our evaluations

show that the performance of VMRPC is 10 fold better than

traditional RPC systems in VMMs. We implemented

VMRPC in Xen [1], VMWare [21], and KVM [16]. The
interface of VMRPC is small and clean, and there are only

eight APIs exposed to the user, which makes VMRPC easy

to learn and use. As the case studies, we integrated
VMRPC into the vCUDA system and a networked file

system, and extensively conducted the experimental

measurements that validate our design choices and
performance gains of VMRPC.

In this paper, we make the following contributions:

. We developed a low latency and high throughput
inter-VM RPC tool, geared toward applications that
require the dedicated high-performance RPC service
in VMMs.

. We proposed a well-defined interface, making
VMRPC easy to learn and portable across different
VMMs.

. We implemented VMRPC on three representative
virtual machine monitors, showing the portability
and flexibility of VMRPC.

. We conducted extensive performance evaluation
with microbenchmarks and on real systems, quanti-
fying the merits of VMRPC.

Some preliminary results of this work were presented in

our IWQoS’10 conference paper [8], however, additional

technical details are added in the present paper. In addition,

in this paper we demonstrate the potential of improving the
performance of system-intensive workloads by using

VMRPC to enhance a networked file system.
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2 BACKGROUND

In this section, we motivate the design of VMPRC by
enumerating several bottlenecks of traditional RPC. More
background can be found in Section 1 of the supplementary
file, which can be found on the Computer Society Digital
Library at http://doi.ieeecomputersociety.org/10.1109/
TPDS.2012.199. Four major factors that affect the perfor-
mance of traditional RPC systems in virtualized environ-
ments are as follows:

Problem 1. high latency, by using socket-like communication
APIs. In VMMs, a socket-like API has to pass through the
TCP/IP protocol stack in both the hostOS and guestOS, which
adds extra overhead to the communication path. Although the
progress has been made in optimizing this kind of commu-
nication in VMMs, it is still less competitive than native
asynchronous communication mechanisms.

Problem 2. low bandwidth data channel, layered on top of TCP/
IP protocol stack. The TCP/IP protocol was originally
developed for transferring data over an unreliable network. It
performs poorly when being used between coresident VMs due
to the virtualization overhead. For example, it has been
reported that the page flipping mechanism in Xen would
degrade the performance of network I/O [15], [24].

Problem 3. complex and expensive serialization/deserialization
procedure. Serialization/deserialization is a standard operation
in RPC systems. This operation is expensive because it involves
a large amount of computation for looking up data tables,
walking the data structure to pack them properly. In a typical
RPC, the serialization/deserialization operations commonly
occur four times, resulting in enormous computation overhead.

Problem 4. too many system calls involved in each RPC
operation. Traditional RPC systems have two inherent
problems. First, their performance is architecturally limited
by the cost of invoking system calls, copying data between the
user space and the kernel space, and possible thread
rescheduling. Second, in VMs some system calls must be
trapped and handled by the VMM, leading to significant
context-switch overhead. In summary, the system calls in VMs
are more expensive than in nonvirtualized environments.

3 DESIGN

In designing VMRPC, we used the following goals as
guidelines:

. Nonintrusiveness: VMRPC should not add extra
complexities to the system level components, and
only depend on the primitives exported by VMMs.

. High performance: VMRPC should enable low
latency, high throughput RPCs with low CPU
consumption.

. Portability: VMRPC should provide support for
different VMMs, and be easy to port across VMMs.

. Simplicity: VMRPC’s interface should be small,
clean, and easy to use.

. Security: VMRPC should not break the isolation
principle already established in VMMs.

3.1 Nonintrusiveness

There are several different approaches to implementing a
high performance RPC system in virtualized environments.

A straightforward way is to modify the VMM to support a
new data transfer mechanism. However, it is not preferable
to add extra functionalities to the VMM, which may
introduce security vulnerabilities and complicate the
implementation of the VMM. Another solution is to develop
a customized kernel module in the hostOS and/or guestOS1

to establish a fast kernel-level communicating channel.
However, that also means VMRPC would be tightly bound
to specific kernel versions or operating systems. Finally, we
decided to implement VMRPC using only the primitives
exported to the user level by VMMs, without any
modifications to the VMMs, and any modules/patches
added to the hostOS/guestOS.

3.2 High Performance

The way to achieve high performance in VMRPC is mainly
influenced by the issues exposed by traditional RPC
systems as discussed in Section 2. Problem 1 can be
resolved by replacing the socket interface with a VMM
platform-specific notification mechanism like the event
channel in Xen. We solve Problem 2 by utilizing the shared
memory mechanism, as adopted by many existing inter-
domain communication tools such as Xway or Xenloop. In
order to overcome Problem 3 and Problem 4, we realize
memory sharing at the user level, where it is possible to
eliminate data serialization/deserialization. Since the OS
and VMM are bypassed in the main control flow of RPC,
VMRPC can minimize the frequency of system calls. In
general, VMRPC combines the strengths of the local RPC
and inter-VM communication optimizations to achieve the
performance goal.

3.3 Portability

Under the guidance of the portability principle, VMRPC
consists of three subsystems: notification channel, control
channel, and transfer channel, as shown in Fig. 1. The
modular design of VMRPC makes it possible to separate
most functionalities from the underlying VMM implemen-
tation, thereby facilitating the process of porting VMRPC to
different VMMs.

3.4 Simplicity

Different from Xway or Xenloop, VMRPC is not binary
compatible to legacy applications. A clean and well-defined
interface is crucial to VMRPC. Traditional RPC frameworks
are often invasive, requiring language tools and code
generators to work. In contrast, VMRPC needs neither
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1. In this paper, the term hostOS refers to a privileged OS (or Dom0
according to Xen’s terminology). The term guestOS refers to a nonprivi-
leged virtual machine (or DomU in Xen).

Fig. 1. Architecture comparison between VMRPC and traditional RPC.



Interface Definition Language (IDLs ) nor code generators,
because the IDL is replaced by a standard C function calling
convention, and the code generator is replaced by a
convenient C preprocessor macro. By keeping the VMRPC
interface clean and small, it is possible for developers to
start writing high-quality code without having to go
through a long learning process.

3.5 Security

VMRPC is specifically tailored toward the needs of high
performance applications, and we make some reasonable
assumptions as in Fido [7]. First, we assume that the
software components in VMs are nonmalicious, and
granting read-only access to shared memory is acceptable.
Second, the possibility of the corruptions propagating from
a faulty VM to a communicating VM via read-only access of
memory is low. Despite these assumptions, we incorporate
several strategies such as managed memory allocation,
protection for sharing stack, and control flow verification,
etc., into VMRPC to strengthen the system security to a
significant extent, which is detailed in Section 4.3.

4 IMPLEMENTATION

To validate the design goals as discussed above, we have
implemented VMRPC in three VMMs: Xen, VMWare
Workstation, and KVM. Since we first implemented
VMRPC in Xen, we use it as a representative VMM to
describe the implementation details.

Fig. 1 depicts the architectural differences between the
traditional RPC and VMRPC. VMRPC consists of three
components: notification channel, control channel, and
transfer channel. The transfer channel is a preallocated
shared data zone dedicated to large capacity and high-
speed data transfer. The control channel is also realized as
a shared zone between two processes, while it is much
smaller as compared to the transfer channel, and only used
to store the control information of RPC like command
index, function index, call flags, parameters, and stack
content. The control channel can be regarded as the
substitute of the External Data Representation (XDR)
protocol in traditional RPC systems. The notification
channel serves as an asynchronous notification mechanism,
similar to hardware interrupts or software signals. Its main
task is to trigger the RPC actions and synchronize
concurrent accesses to the shared memory. The notification
channel does not carry any actual payload, the RPC related
information resides in the control channel and the transfer
channel. In VMRPC, the notification channel is the only
place where the OS and VMM must be involved.

From Fig. 1, it is obvious to see the advantages of
VMRPC as compared with traditional RPC systems. First,
moving the communication and control to the user level
leaves the kernel (and VMM) only responsible for context
switching. Second, VMRPC circumvents the TCP/IP proto-
col stack, and directly exploits the VMM platform-specific
shared memory mechanism to represent and transfer data
in the user space. Meanwhile, the expensive serialization/
deserialization operations are also eliminated. Last, the
VMM’s built-in notification mechanism ensures the mini-
mized latency for the RPC operations.

In short, the efficiency of VMRPC comes from the
“making the common case fast” approach to avoiding
unnecessary synchronization, kernel-level thread manage-
ment, and data copy between different address spaces on
the same machine.

4.1 Memory Mapping

As shown in Fig. 2, VMRPC utilizes the user-level memory
mapping to set up the control channel and the transfer
channel. In Xen, this process is straightforward: the client
first allocates a new virtual memory space, then the server
maps the corresponding physical page frames into its own
virtual address space by using the memory introspection API
of Xenaccess: user_va_map_range. The case for VMWare is
somewhat different. The server calls VMCISharedMem_Cre-
ate to create a shared memory service, and then the client
attaches to the service by calling VMCISharedMem_Attach.
The following are some important issues related to memory
mapping that arose in developing VMRPC.

Efficiency of mapping: When we map 100 M memory
from a VM to Dom0 (host in VMWare), IVSHMEM [14]
in KVM, and Xenaccess consume 5.5 millisecond and
1.5 seconds, respectively, while VMCI [20] in VMWare takes
23 seconds. During the execution of VMCI, we observed that
the system’s temporary folder (/tmp directory in Linux)
generated a randomly named file whose size is exactly 100 M
bytes. We speculate that the inefficiency of VMCI stems from
the factor that it is not a shared memory mechanism that is
directly built on top of page table mapping, based on the
observation of the file system activities occurring in the
mapping process. Further optimization to Xenaccess’s
mapping is possible, but it is beyond the scope of this paper.

Although the cost of memory mapping is relatively high
(as compared with the runtime overhead) except with
IVSHMEM, these operations are performed only once at the
initialization stage. After the establishment of the memory
mapping, all subsequent communications between two
address spaces will be performed through logical channels
that are pairwise shared between the client and the server.

Avoid demand paging: Most modern operating systems
implement demand paging in virtual memory manage-
ment. The OS allocates a physical page only if an attempt is
made to access it. While this strategy works well in most
cases, it is not desirable for our design of memory mapping.
In VMRPC, when a mapping operation is performed on the
server side, we must ensure that there are sufficient
physical pages to be mapped. This limitation can be
resolved by performing a write access to all the pages
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belonging to that shared memory region, which guarantees
there are enough physical memory frames to be mapped to
each page in the shared virtual memory region.

Avoid page swapping: Another issue is that the page
swapping strategy adopted by the operating systems may
swap out the share pages to the disk, which will lead to
inconsistent mapping between the server and the client. We
prevent this situation from happening by using the page
lock mechanism provided by the OS, such as mlock in Linux
and virtuallock in Windows. These functions may be subject
to the OS restrictions (such as the total number of pages that
can be locked simultaneously), but so far, they have not
caused any problems in our development environment.

Offset handling: None of Xenaccess, VMCI, and
IVSHMEM provides support for mapping virtual memory
at a designated address. In Xen, the client’s shared memory
is mapped to an arbitrary address in the server’s address
space. As a result, the pointer arguments (if any) of the
function calls on the client side are incomprehensible to the
server side functions. They need to be shifted to appropriate
addresses on the server side in order for the RPC operations
to execute properly. Since the length and content of shared
memory is identical on both sides, all VMRPC needs to do is
to add or subtract a constant offset to each pointer
argument. VMRPC cannot do this automatically due to its
inability of distinguishing pointers from other types of
arguments, because there is no explicit type information
available in VMRPC. We provide another API vmrpc_offset
that must be called to compute the offset between two
address spaces.

4.2 Transfer Channel

The transfer channel is built on top of RPC heap. The RPC
heap is a preallocated memory region that is mapped into
both the server and client address space, and large volume
of data can be directly transferred through it. The RPC heap
differs from the standard heap provided by operating
system, but they can be used interchangeably by applica-
tions. VMRPC provides management APIs to specify the
size of a RPC heap and create or destroy a RPC heap.

Zero copy: For interdomain RPC operations, exploiting
shared memory is a straightforward way to avoid copying
from the user space to the kernel space and vice versa. We
ensure data accessibility by mapping the memory in the
address space of the source process to the address space of
the destination process, so that there are no user level
copies. Kernel level copies are also avoided by removing the
kernel and VMM from the critical path of data transfer.

RPC heap size: Since the mapped address of shared
region in the server is completely random, it is difficult to
change the size of a shared region dynamically once
established. VMRPC relies on users to estimate the usage
and size of a RPC heap. Oversized RPC heap is wasteful
because physical memory pages are locked and spare pages
are not allocatable to other applications until the end of a
RPC operation. While undersized RPC heap may cause
allocation failure in the shared region.

Heap management: We implemented a simple heap
management interface. When a piece of data needs to be
shared, the user should use vmrpc_malloc instead of the
regular C function malloc to allocate memory blocks. When

the memory is no longer in use, vmrpc_free should be called,
which operates the same way as the standard free except it
operates in VMRPC’s heap. VMRPC also provides the APIs
such as vmrpc_heap_setup and vmrpc_heap_destroy to create
and destroy user-defined RPC heaps.

4.3 Control Channel

Since in VMMs the client and server reside in the same
machine (although located in different VMs), it is unneces-
sary to pack and represent data in the complicated ways. In
the following, we discuss the techniques related to the
control channel.

Control page: The control page serves as a message
exchange media. At startup, VMRPC stores the metadata,
such as stack size, heap size, and starting addresses of the
stack and the heap, in the control page. When the client
issues a RPC operation, two types of control information are
saved in the control page, call index and ESP value. The call
index is used by the server to find the right service function
in the RPC dispatch table. The ESP value indicates the stack
frame of the current function. Since the client’s main stack is
mapped to the server’s address space, the server also puts
the return value in the control page.

RPC stack: In VMRPC, both the server and client have at
least two stacks. The first one is their normal execution stack
which we call “Server Main Stack” (SMS) and the second
one is called “Client Main Stack” (CMS). When initializing a
RPC operation, the client stores the CMS metadata in the
control page, allowing the server to map the corresponding
memory region to its own address space. Thus, the client’s
main stack becomes shared between the server and the
client, which we call “RPC stack.” A temporary stack is also
set up in the client during the initialization stage. We
describe the usage of this stack below.

For each RPC, the client first stores the call index on the
top of the current stack in the control page, and switches to
the temporary stack and notifies the server. In turn, the
server switches from the current SMS to the RPC stack
using the value kept in the control page. When the RPC
finishes, the server switches back to the SMS and writes the
return value to the control page. Then, the client replaces
the return address on the RPC stack with the corresponding
value on the temporary stack, takes the return value from
the control page and makes this modified RPC stack as its
execution stack. By now, a complete two-way RPC opera-
tion is accomplished.

Return address reservation: The control flow informa-
tion in the client must be carefully reserved and restored
because it may be modified during the process of stack
sharing. For example, the return address in the RPC stack
will be overwritten when the service function is performed
on the server side. Thus, the client must be able to restore the
original return address and change the corresponding value
on the RPC stack, when the control flow is switched back.

Isolation issue: There is no doubt that sharing memory
between VMs would compromise the isolation principle
advocated by most virtualization solutions. We minimize
this side effect in two ways. First, VMRPC achieves sharing
based on the standard VMM interfaces, leaving the respon-
sibility of guaranteeing isolation to VMMs. Second, VMRPC
works in user level, which decreases the impact of fault
propagation and system crash on system dependability.
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Security issue: Being able to access the shared stack
means that the server can alter the control flow of the client.
Malicious intentions would lead to denial-of-service attack
or exposure of sensitive information. In VMRPC, we
assume the server is trusted, but the client is not. When
the guestOS issues a RPC operation, the shared stack is
configured as read-only to the guestOS until the server
transfers the control back to the client. The server will
validate the integrity of the return address on the stack and
clear all sensitive information to ensure the security of stack
sharing. Thus, the client cannot change the control flow or
spy the data flow of the server.

4.4 Notification Channel

We implement the notification channel in VMRPC for two
main reasons. First, in order to protect the shared stack and
heap from concurrent access that may result in nondeter-
ministic behaviors, we need to synchronize these concur-
rent accesses. Second, the RPC operation requires a way to
allow both communicating parties to respond to a remote
call or a return value. The VMM-specific asynchronous
mechanisms, such as the event channel in Xen, the VMCI
datagram in VMWare, and the interrupts in IVSHMEM are
essential for VMRPC to build such a notification channel.

4.5 VMRPC User Interface

VMRPC provides a simple and clear interface to users,
consisting of only eight APIs. The details on how to use these
APIs can be found in Sections 2 and 3 of the supplementary
file, available online, with an illustrative example.

5 EVALUATION

In this section, we first evaluate the performance of VMRPC
by comparing it with two traditional RPC systems
(XMLRPC and ICE) and an interdomain communication
system (Xenloop), and then conduct the experiments in a
case study. Another case study can be found in the
supplementary file, available online.

5.1 Test Setup

Unless otherwise stated, we conducted all the experiments
on the following machine: Core Duo 6550 2.6 GHz CPU
with 3 GB of memory running Xen 3.1, VMWare Work-
station 6.0, and KVM 0.14.0 for linux. The hostOS and
guestOS in Xen/VMWare and KVM are Fedora 8 (Linux
kernel 2.6.21) and Fedora 13 (Linux kernel 2.6.33.3,
IVSHMEM patch for KVM only works in newer kernels),
respectively. In each test, the server ran in the Dom0 (or the
host in VMWare and KVM) and the client ran in the DomU
(or the guest in VMWare and KVM). When testing Xenloop,
we used Linux kernel 2.6.18 and Xen 3.2 to meet the
requirements of Xenloop. All the evaluation results are
averaged across 10 runs.

5.2 Latency

We measured the cross-domain round-trip latency with a
null RPC (defined as an empty function without any
arguments and return value), which excludes the extra
time spent on specific computations and data transfer. For
completeness, we also conducted performance measure-
ments about the native socket interface by transferring
1 byte data from the client to the server.

As shown in Table 1, the numbers indicate the latency in
microseconds averaged across 100,000 null RPC operations.
We can observe that ICE is a highly efficient RPC system
that incurs only a little overhead on top of the native socket.
However, VMRPC is much faster than all other options due
to its inherent mechanisms implemented. In contrast, the
performance of VMRPC in VMWare is poorer than that in
Xen and KVM, but still better than that in socket and
traditional RPC tools. KVM incurs larger latency than Xen
and VMWare in three other tests.

A white paper of ICE [13] states that the optimization of
latency is constrained by the limitation of physical hard-
ware like the network card. However, that limitation does
not exist in VMRPC because there is no real network
device in the guestOS. In addition, according to that white
paper, the end-to-end performance is easily dominated by
the actual processing cost, not the RPC protocol, and
improving the latency further would not yield any notice-
able improvement. This conclusion is not entirely correct
for a RPC system that focuses only on the “local” calls.
Low latency can improve the performance of RPC on the
same hardware significantly, which is demonstrated in the
case study on vCUDA (see Section 4 of the supplementary
file, available online).

5.3 Throughput

Simply put, the throughput of any RPC system can be
calculated as follows: throughput ¼ actual payload per RPC

the execution time of a RPC .
The actual payload is the data that a servant function
processes, not including the RPC control information, the
communication protocol messages, and the extra bytes
resulting from serialization. We can easily obtain its value
by defining a function with a fixed-length string as the
argument. The denominator is more complex than the
numerator. LPRC [2] analyzed seven aspects related to
RPC’s total execution time. Some are relatively stable, while
others depend on dynamic characteristics of RPC opera-
tions. For example, serialization overhead is mainly affected
by the size and complexity of actual payload, and the
transfer overhead depends on the data volume after
serialization.

VMRPC eliminates some kind of overhead from tradi-
tional RPC systems, but it also introduces some additional
overhead: pointer argument conversion in vmrpc_offset, and
heap management in vmrpc_malloc and vmrpc_free. To study
the efficiency of VMRPC in the worst case, in the following
tests, the overheads described above are all included in total
cost of VMRPC.

Since the throughput of RPC is heavily dependent on the
type of the data transferred, we define three types of data
with different complexity: byte sequence, fixed-length structure
sequence, and variable-length structure sequence. The defini-
tions and actual payloads are summarized in Table 2.
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The LEN in Table 2 represents the length of sequences
ranging from 100 to 10,000,000, so we can observe the
throughput for a wide range of payloads (from 1 KB to
about 100 MB). We analyze the receive and send operations
separately. Fig. 3 shows the measured throughput as a
function of the sequence length.

The gradual increase of throughput as the message size
increases indicates that the performance is dominated by
the per-message call overhead at small message sizes. As

we expect, it is obvious that the throughput of VMPRC
outperforms other RPC systems significantly. As shown in
Figs. 3a and 3d, VMRPC achieves up to 10 times the
throughput of ICE and XMLRPC in peak values (sequence
length reaching 10,000). The relative discrepancy between
VMRPC and ICE/XMLRPC is widening with the increas-
ing complexity of messages, although the absolute value of
the VMRPC throughput decreases (comparing (a) with (c),
and (d) with (f)). VMRPC in KVM achieves the best
performance approximating 2,500 MB/s (see the scale of y-
axis) in three VMMs, even though KVM is a full-
virtualization-based VMM. Reasoning for this large gap
requires a comprehensive comparison of the inherent
memory sharing mechanisms among three VMMs, which
is beyond the scope of this paper.

With the increase of message size, the performance
becomes dominated by the overhead of actual data transfer.
ICE and XMLRPC decrease rapidly due to the serialization,
copy, transfer, and context switch overhead. In VMRPC, the
costs of memory allocation, pointer address conversion, and
memory copy also lead to the decline of the throughput. A
strange phenomenon is that VMRPC in VMWare sees a
large drop when the workload exceeds 1,000,000, while it is
stable in Xen and KVM with the same load. Further
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investigation reveals that when writing more than 50 MB
data to the shared memory, the performance of VMRPC in
VMWare is lower than that in Xen, resulting in higher
overhead. We attribute this to the same reason that causes
the deficiency in memory mapping.

It is easy to find that VMRPC recv performs better than
VMRPC send because of a reduction in data copy. On the
contrary, ICE recv is worse than ICE send due to an extra
copy. However, it is not true for KVM because the send and
receive bandwidth in KVM is asymmetric, which we
confirmed by a simple bandwidth test. Thus, the results
of ICE recv are better than ICE send in KVM even with the
extra data copy. We also notice the curves of ByteSeq and
FixedSeq of VMRPC show a similar trend, because the data
of both types are intrinsically contained in a continuous
region of virtual address space, resulting in less memory
allocations and copies. The data of type VarSeq are usually
composed by a large number of small and discrete memory
blocks, which increase the frequency of allocation and
copy. As a result, the turning point of curves of type VarSeq
comes earlier.

5.4 RPC Heap Setup Overhead

Table 3 shows the time spent on mapping variably sized
shared regions. Although the overhead for building a large
heap is not ignorable in cases where the heap exceeds a
certain size (with VMCI, we need approximately 22 seconds
to set up a 100 MB heap), we regard this as the initialization
overhead. It would not have any negative impact on the
system performance at runtime. The measurement results
of IVSHMEM are surprisingly good, and mapping 100 MB
memory consumes only 5.4 milliseconds as compared to
1.5 seconds in Xenaccess and 22 seconds in VMCI.

5.5 VMRPC versus Xenloop

Having discussed the design, implementation, and evalua-
tion of VMRPC, we may question that if the performance
of VMPRC is superior to a traditional RPC system
enhanced by an interdomain communication optimization
system. In order to show the comparative advantage of
VMRPC over interdomain communication optimization
systems, we compare VMRPC with Xenloop [22] because
of its desired features such as simplicity, transparency, and
high performance. However, the current implementation of
VMRPC does not support communication between DomUs
in Xen, while Xenloop only offers optimization between
two DomUs. Thus, we resort to analyze the relative
speedup of throughput in their respective settings. The
throughput of ICE between DomUs is presented in the
second column of Table 4. We fill the third column with
the improved throughput of ICE with Xenloop, and the
speedup rate is shown in the fourth column. As a
comparison, we run ICE and VMRPC tests between

Dom0 and DomU, the seventh column reflects the
acceleration ratio of VMRPC versus ICE. From the results,
we can see the speedup from VMRPC is much better than
that of Xenloop. In addition, the advantage of VMRPC
becomes clearer as the complexity of payload grows.
VMRPC performs about 122 times better than ICE in Var
recv as shown in the last row of Table 4.

5.6 Case Study: A VMRPC-Based Networked File
System

The performance evaluation in previous sections focuses on
synthetic data-intensive benchmarks (another case study on
the data-intensive application vCUDA [18] can be found in
Section 4 of the supplementary file, available online), which
involves little operating system activity, and the results
present the best case acceleration potential of performance.
In this section, we explore the possibility of speeding up the
performance of a networked file system in virtual machines
with VMRPC, which further quantifies the advantage of
VMRPC in system-intensive workloads.

Our evaluation is based on stfufs [19], a FUSE-based [10]
networked file system. In virtualized environments, the
client and server of a networked file system share the same
hardware, but they are partitioned into different virtual
machines by the VMM. The networked file systems typically
use RPC or customized RPC-like mechanisms to exchange
data between the client and the server. However, RPC
incurs nontrivial overhead because of data copying, net-
work stack traversing, and data marshalling as discussed in
previous sections. To illustrate the superiority of VMRPC,
we enhanced stfufs by replacing its original communication
protocol with VMRPC, and conducted detailed evaluation
on a set of synthetic workloads. In the following, we first
present how VMRPC’s operations are mapped into sftufs
with a motivating example to demonstrate the processing of
typical system calls. Then, we show the evaluation results of
sftufs with various file system workloads. A brief introduc-
tion of FUSE and stfufs can be found in Section 1.4 of the
supplementary file, available online.

To better understand how VMRPC works in sftufs, we
detail the workflow of a representative callback function
stfufs_read. When triggered by the read system call in FUSE,
stfufs_read first sends control information to the server
through the control page, and the function parameters are
sent to the server via the shared stack. The transfer channel
is not established yet because the read call does not involve
actual data transfer at this time, but pointers (if any)
pointing to shared heap have reached the server as part of
the control page. Then, stfufs_read starts the notification
channel and suspends. Upon the arrival of the client
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request, the server switches from the main stack to the RPC
stack, parses the client’s request and issues the local system
call. Then, the server puts the data read locally into the
transfer channel (shared heap), switches from the RPC stack
back to the main stack. At last, a notification is sent to the
client asynchronously. When the client is woken up by the
notification channel, stfufs_read is invoked to copy the data
from the shared heap to the destination specified by the
second parameter of stfufs_read (static int stfufs_read(const
char *path, char *data, size_t size, ...)). This copy is unavoid-
able because the memory allocated for “char *data” is from
the FUSE system, which prevents us from using the shared
heap to manage it.

5.6.1 Evaluation of stfufs

We ran all experiments on the same machine as shown in
Section 5. We deployed the sftufs server and client in the
hostOS and guestOS, respectively. The guestOS is config-
ured with 1.5 GB RAM, single VCPU, and bridged network
in all VMMs (Xen, VMWare, and KVM). We used FileBench
[9], an application level workload generator to emulate a
wide range of file system workloads. We chose three
common server workloads: mail server, web server, and file
server. Table 5 summarizes the workload characteristics.
Three basic performance metrics: throughput, latency, and
CPU time per system call are reported.

Mail server. In mail server workload, FileBench per-
forms a sequence of operations to imitate reading mails
(open, read whole file, and close), composing (open/create,
append, close, and fsync) and deleting mails. The average file
size is 16 KB and the read-write ratio is 1:1.

Web server. The web server workload uses a read-write
ratio of 10:1, and reads entire files sequentially by multiple
threads, as if reading webpages. All the threads append
16 KB to a common web log.

File server. The file server workload emulates a server
hosting home directories of multiple users. Each thread
performs a series of create, delete, append, read, write, and stat
operations, exercising both the metadata and data paths of
the file system. The average file size is 128 KB and the read-
write ratio is 1:2.

As Table 6 shows, stfufs-VMRPC significantly outper-
forms stfufs-orig in all cases. In general, VMRPC improved
the throughput by 28.33 percent up to 72.94 percent, the
latency by 22.4 percent up to 55.68 percent, the CPU cycles
by 3.16 percent up to 16.59 percent. Memory sharing and
event-based notification facilities helped increase through-
put and decrease latency, respectively. The performance
gain in CPU time is relatively small as compared to
throughput and latency, because stfufs uses a socket-based
customized communication protocol instead of a general
RPC protocol. Thus, stfufs does not involve RPC specific
overhead. The improvement on CPU time mainly relies on
the elimination of buffer management and socket-based
communication in stfufs.

When writing data larger than 50 MB in VMWare, we did
not observe any abnormalities occurring in experiments
discussed in previous sections. The reason is that the read
and write buffer size in FUSE are 128 and 4 KB, respectively,
which are far less than the 50 MB bound. Although the
solution for enlarging these buffers exists, we did not go
further on large buffer measurements (requiring patches to
FUSE and kernel recompilation). Indeed, larger buffer
would have a positive effect on throughput evaluation.

Considering the throughput and latency in the mail and
web server workloads, in Table 6, we can see that the
speedup ratios in Xen, VMWare, and KVM are shown in
descending order (observing the columns of throughput
and latency vertically). For example, the speedup ratio of
throughput for mail server workload is 72.94 percent in
Xen, 50 percent in VMWare, and 40.91 percent in KVM, and
stfufs-VMRPC decreases the latency for web server work-
load by 37.50, 25.37, and 22.40 percent in Xen, VMWare, and
KVM, respectively. The file server workload does not
exhibit such a pattern, where stfufs-VMRPC achieves the
best speedup ratio in VMWare.

Next, we examine how the speedup ratios vary among
three different workloads in individual VMMs. Observing
the horizontal variations in the speedup row of Table 6, we
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know that the throughput and latency speedup ratios both
follow the relation: mail server> file server> web server in
all VMMs. For example, referring the throughput column in
KVM, we can observe that the ratio of mail Server, file server,

and web server is 40.91, 38, and 28.33 percent, respectively.
Intuitively, workload involving large data transfer such as
the file server workload would get more acceleration, but
Table 6 gives opposite results. We attribute this to the

complexity nature of the system-intensive workload. Note
that stfufs achieves the best baseline performance in Xen due
to its para-virtualization architecture.

6 RELATED WORK

We present the related work by organizing the literature into

local RPC and interdomain communication optimizations.
LRPC [2] addressed how local RPC can be implemented

with minimal overhead. It emulates the native procedure
call model, and no extra message passing but the original
procedure-call convention is needed. By running the client’s

thread to perform requested services in the address space of
the server, LRPC sets up a simple control transfer model.
Bourassa and Zahorjan [6] extended LRPC to the Mach3
operation system, and also changed the language call
convention from Modula2+ to C. URPC [3] is very similar

to VMRPC in some aspects such as OS-bypass, it optimizes
the RPC by moving the communication facilities from
kernel to user space. Nevertheless, URPC is still an intra-OS
RPC, more precisely, an IPC tool. SHRIMP RPC [4], [5]

actually is the adoption of URPC in a distributed memory
architecture. FastRPC [11] is designed for splitting mono-
lithic programs into multiple cooperating processes that can
be confined by a kernel security framework.

XenSocket [24] is a one-way communication channel

between two VMs based on the shared memory. It defines a
new socket type, with associated connection establishment
and read-write system calls that provide interfaces to the
developers by utilizing the underlying inter-VM shared
memory mechanism. IVC [12] is a user level communication

library intended for message-passing HPC applications. It
provides socket style APIs. Both Xway [15] and Xenloop
[22] offer a fully transparent interdomain communication
channel. The difference between them is that Xway
intercepts the TCP/IP stack beneath the socket layer, and

Xenloop exploits the netfilter hooks in Linux to intercept the
outgoing network packets routed to another VM. Xway
needs extensive modifications to the network protocol stack
in the operating system. Xenloop is implemented as a kernel

module, and one major drawback of Xenloop is that it does
not support the communication between the hostOS and the
guestOS. Fido [7] is a high-performance interdomain
communication mechanism tailored for enterprise appli-
ances. Although VMRPC shares some similarities with Fido

based on the techniques implemented in these two systems,
such as the shared global address space in Fido and the
shared heap and stack in VMRPC, but Fido is not
specifically designed as a RPC system. Thus, we believe

VMRPC is complementary to Fido as VMRPC can eliminate
much of the overhead inherent in RPC systems.

7 CONCLUSIONS

In this paper, we have presented the design, implementa-
tion, and performance evaluation of VMRPC. VMRPC
trades transparency for efficient communications, and
provides fast responsiveness and high throughput when
deployed for communicating components in virtualized
environments. It is specifically designed for the applications
that require high-volume data transfer between VMs. Our
evaluation shows that the performance of VMRPC is an
order of magnitude better than the traditional RPC systems
and the existing interdomain communication mechanisms
in processing data-intensive applications, and VMRPC also
improves the performance of a networked file system by up
to 73 percent.
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