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Abstract—This paper describes vCUDA, a general-purpose graphics processing unit (GPGPU) computing solution for virtual

machines (VMs). vCUDA allows applications executing within VMs to leverage hardware acceleration, which can be beneficial to the

performance of a class of high-performance computing (HPC) applications. The key insights in our design include API call interception

and redirection and a dedicated RPC system for VMs. With API interception and redirection, Compute Unified Device Architecture

(CUDA) applications in VMs can access a graphics hardware device and achieve high computing performance in a transparent way. In

the current study, vCUDA achieved a near-native performance with the dedicated RPC system. We carried out a detailed analysis of

the performance of our framework. Using a number of unmodified official examples from CUDA SDK and third-party applications in the

evaluation, we observed that CUDA applications running with vCUDA exhibited a very low performance penalty in comparison with the

native environment, thereby demonstrating the viability of vCUDA architecture.

Index Terms—CUDA, virtual machine, GPGPU, RPC, virtualization.
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1 INTRODUCTION

SYSTEM-LEVEL virtualization has recently attracted much
attention from both industry and academe. This interest

stems from the continued growth in hardware performance
and the increased demand for service consolidation from
business markets. Virtualization technology allows multiple
virtual machines (VMs) to coexist in a physical machine
under the management of a virtual machine monitor
(VMM). VMM has been applied to many areas including
intrusion detection [10], high-performance computing
(HPC) [16], device driver reuse [25], and so on.

Over the past few years, graphics processing units
(GPUs) have quickly emerged as inexpensive parallel
processors due to their high computation power and low
price. The modern GPU is not only a powerful graphics
engine, but also a highly parallel programmable processor
featuring peak arithmetic and memory bandwidth [13], [31],
[33]. The newest GPU architecture supports high-precision
floating-point computation and error-correcting code (ECC)
memory, which are both important requirements for HPC.

GPU programming has been extensively used in the last

several years for resolving a broad range of computationally

demanding and complex problems. The introduction of

some vendor specific technologies, such as NVIDIA’s

Compute Unified Device Architecture (CUDA) [7], further

accelerates the adoption of high-performance parallel

computing to commodity computers.
Although virtualization provides a wide range of bene-

fits, such as system security, ease of management, isolation,

and live migration, it is not widely adopted in the high-
performance computing area. This is mainly due to the
overhead incurred by indirect access to physical resources
such as CPU, I/O devices, and physical memory, which is
one of the fundamental characteristics of virtual machines.
In addition, the GPU hardware interface is proprietary,
rather than standardized. GPU designers are highly secre-
tive of the specifications of their hardware, which leaves no
room to develop an elegant virtualization scheme for a GPU
device in the hardware abstraction layer. As a result, the
powerful data processing ability in GPUs cannot be directly
used by applications running in virtualized environments.

In this paper, we present vCUDA, a framework for HPC
applications that uses hardware acceleration provided by
GPUs to address the performance issues associated with
system-level virtualization technology. vCUDA works by
intercepting and redirecting Compute Unified Device Archi-
tecture APIs in VMs to a privileged domain with an enabled
real graphics device. vCUDA accomplishes the computa-
tions through the vendor-supplied CUDA library and GPU
driver. A VMM-specific remote procedure call (RPC) tool,
Virtual Machine Remote Procedure Call (VMRPC) [6], was
developed to accelerate the data transfer. Using detailed
performance evaluations, we demonstrate that hardware-
accelerated high-performance computing jobs can run as
efficiently in a virtualized environment as in a native host.

In summary, the main contributions of our work are as
follows:

. A framework that allows high-performance comput-
ing applications in VMs to benefit from GPU
acceleration. To demonstrate the framework, we
developed a prototype system on top of KVM and
CUDA.

. The development of a dedicated RPC infrastructure
for virtualized environments to improve the per-
formance of remote procedure calls between differ-
ent VMs.
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. Two functional extensions built within our frame-
work (i.e., resource multiplexing and suspend/
resume (S&R)) without modifying the applications.

. A detailed performance evaluation on the overhead
of our framework. This evaluation shows that the
vCUDA framework is practical and performs well in
HPC applications comparable with those in native
environments.

Some preliminary results of this work were presented in
our IEEE IPDPS’09 conference paper [32]; however, addi-
tional technical details are described in the present paper. In
addition, we have developed a new model (SHARE model)
for vCUDA that significantly improves its efficiency. The
proposed vCUDA is adjusted accordingly to reflect these
changes. The results show that, for the new model, only
vCUDA produces a slight overhead in a virtualized
environment. Most importantly, vCUDA has been updated
(from CUDA 1.1 and G80) to support CUDA 3.2 and the
Fermi GPU. However, in attempting to port vCUDA to new
platforms, we failed to install a working Fermi driver in the
Xen-enabled linux kernel for the domain0 of almost all
major Linux distributions. Finally, we chose to port vCUDA
and VMRPC to KVM [21] (a full virtualization solution).

The rest of the paper is organized as follows: in Section 2,
we provide some necessary background for the current
work. We then present our vCUDA design in Section 3, and
the implementation in Section 4. An example is shown in
Section 5. We carry out a detailed performance analysis in
Section 6. Finally, we introduce related work in Section 7,
and conclude the paper in Section 8.

2 BACKGROUND

2.1 VMM and GPU Virtualization

System-level virtualization simulates details of the under-
lying hardware in software, provides different hardware
abstractions for each operating system instance, and
concurrently runs multiple heterogeneous operating sys-
tems. System-level virtualization decouples the software
from the hardware by forming a level of indirection, which
is traditionally known as the virtual machine monitor. A
variety of VMM platforms [21], [4], [36] provide a complete
and consistent view of the underlying hardware to the VM
running on top of it.

I/O virtualization is an important part of system-level
virtualization. So far, there are four main I/O device
virtualization methods: VMM pass-through [39], device
emulation [21], self-virtualized hardware [38], and protocol
redirection (para-virtualization) [4], [23]. Each method has
corresponding advantages and disadvantages. Basically,
the first three approaches own the characteristics of
transparency to guestOS, while the protocol redirection
approach needs to change the I/O control flow in guestOS.

Although virtualization has been successfully applied to
a variety of I/O devices, virtualization of the GPU in VMM
is difficult. One main reason is the lack of a standard
interface at the hardware level and driver layer. The
VMware [8] classifies the existing GPU virtualization
approaches into two main categories: front-end virtualiza-
tion (API remoting and device emulation) and back-end

virtualization (VMM pass-through). API remoting [23] is a
kind of protocol redirection, which redirects the GPU API
from guestOS to hostOS by replacing system dynamic link
libraries containing APIs. API remoting is device indepen-
dent but significant issues remain with this approach when
the methods for managing the state in the original APIs are
not designed with this approach in mind. Furthermore, the
protocol redirection method in API level can only deal with
a part of the device function in a time, for GPU which
involved many different kinds of APIs, e.g., OPENGL,
Direct3D, CUDA, OpenCL, DirectCompute, etc., each of
these interfaces needs a stand-alone virtualization solution.
As the device emulation method, it is nearly intractable to
emulate a full function GPU corresponding to a real high-
end modern GPU because it is a highly complicated and
underdocumented device. The VMM pass-through method
means the VMM assigns part of the host’s real I/O device to
the guestOS exclusively, any other VMs, sometimes even
the hostOS, do not have any access to the device anymore.
Since the guestOS communicates directly with the hard-
ware, it is able to use the native drivers and its full
capabilities. This method does not require any guestOS
changes and in theory providing near-native performance.
But this method violates the resource consolidation and
multiplex philosophy of virtualization.

2.2 Inter-VM Communication

VMM enforces the isolation between different VMs, while
simultaneously severely compromises the effectiveness of
inter-VM communication. The communication between two
guestOS needs to frequently pass through the hostOS,
leading to a significant inter-VM communication overhead.
Some techniques in this research area, such as Xensocket
[41], Xenloop [37], and Xway [22], have addressed this
problem by building a fast inter-VM channel based on a
shared memory. By redirecting or changing the traditional
network transport path (socket layer or TCP/IP protocol
stacks), these techniques obtain a better performance in
both latency and throughput. The latest development in this
area is Fido [2], which is a high-performance inter-VM
communication mechanism tailored to software architec-
tures of enterprise-class server applications.

However, in order to maintain transparency in these
applications, these projects choose to utilize the shared
memory mechanism in the VMM or OS layer, resulting in
frequent OS and VMM layer context switches. Borrowing the
idea from Bershad et al. [3], we developed a dedicated inter-
VM communication channel in user space that removes the
redundant context switches and significantly decreases the
communication cost between VMs. The user space commu-
nication channel is integrated into a lightweight RPC system,
VMRPC [6], which is used as the main middleware in the
proposed vCUDA framework to redirect the API flow.
Section 4.3.1 provides more details on this topic.

2.3 CUDA

CUDA [7] is a general-purpose graphics processing unit
(GPGPU) solution of NVIDIA that provides direct access to
the GPU hardware interface through a C-like language
(CUDA C), rather than the traditional approach that relies
on the graphics programming interface. CUDA extends C
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by allowing the programmer to define C functions, called
CUDA kernels, that, when called, are executed n times in
parallel by n different CUDA threads, as opposed to only
once like regular C functions.

CUDA provides two programming interfaces: driver API
and runtime API. The runtime API is built on top of the
CUDA driver API. The virtualization of the CUDA runtime
API is the main focus of this paper.

3 DESIGN

There are many challenges in designing a good CUDA
virtualization scheme. In formulating our design, we had
several goals in mind:

Transparency. A well-designed CUDA virtualization
scheme should be intuitive and useful in a wide variety of
CUDA applications. Furthermore, the scheme should be
binary compatible to applications originally designed for
nonvirtualized environment.

Performance. vCUDA should address the performance
and management overhead associated with VM-based
computing, and should make CUDA applications to run
as fast as the native case.

Functionality. Whenever possible, vCUDA should be
compatible with existing features in VMs, such as resource
multiplexing, live migration, secure isolation, and so on.
With vCUDA, applications running in VMs should work as
usual, without any changes, when enabling VM-specific
features.

The vCUDA framework is organized around two main
architectural features. First, runtime APIs are encapsulated
into RPC calls. Their parameters are properly queued and
redirected to the hostOS, and internal objects are cached and
kept persistent on both the server and the client sides.
Through this kind of virtualization, the graphics hardware
interface is decoupled from the software layer. Second, we
developed a high-efficiency RPC tool working in a virtualiza-
tion environment that exploits the shared memory mechan-
isms in VMM in order to enhance the performance of remote
procedure call between different VMs. Lazy update is also
adopted to reduce the frequency of remote calls.

CUDA is currently not a fully open standard, and some
internal details have not been officially documented. We do
not possess full knowledge regarding the states maintained
by the underlying hardware driver or runtime library. In
vCUDA, we achieved the virtualization functionality from
the following three aspects:

. Function parameters. The intercepting library has
no access to all the internals of an application to
which it is linked. However, the fake library can
obtain all the parameters of corresponding API calls,
which can be used as inputs to the wrapper APIs
defined in the intercepting library. These wrapper
APIs with proper parameters can then be sent to a
remote server for execution as normal calls.

. Ordering semantics. Ordering semantics are the set
of rules that restrict the order in which API calls are
issued. CUDA API is basically a strictly ordered
interface, which means that some APIs must be
launched in a specified order. This behavior is

essential for maintaining internal consistency. How-
ever, in some cases, if possible, vCUDA uses less
constrained ordering semantics when an increased
performance is ensured.

. CUDA states. CUDA maintains numerous states in
the hardware and software. The states contain
attributes such as CUBIN handler, device pointers,
server/client memory pointers, variable symbol,
array pitch, texture, and so on. On a workstation
with hardware acceleration, the graphics hardware
and local CUDA library keep track of all of the
CUDA states. However, in order to properly imple-
ment a remote execution environment for these APIs
in virtual machines, keeping track of these states in
the remote server is necessary for vCUDA.

4 IMPLEMENTATION

vCUDA uses a robust client-server model consisting of three
user space modules: the vCUDA library (as a user space
library in the guestOS), the virtual GPU (a database in the
guestOS) , and the vCUDA stub in the server (as an
application in the hostOS). Fig. 1 shows the vCUDA
architecture. For the rest of this paper, the term “server
memory” refers to the address space of vCUDA stub in the
hostOS, the term “client memory” refers to the address space
of CUDA application running in the guestOS, and “device
memory” refers to the memory space in the graphics device
of the hostOS.

4.1 System Component

vCUDA Library resides in the guestOS as a substitute for
the standard CUDA runtime library (libcudart.so in Linux),
and is responsible for intercepting and redirecting API calls
from applications to the vCUDA stub. The virtualized
CUDA library, hereafter named the vCUDA library,
realizes the functions defined by the real CUDA runtime
library. When an API is invoked by the application, the
thread index, API index, and its arguments are packed and
inserted into a global API queue. This queue contains a
copy of the arguments, dereference information, synchro-
nization flag, and so on. The queue contents are periodi-
cally pushed to the RPC system according to several
predefined strategies (details in Section 4.3.2).

vCUDA now supports two different kinds of execution
mode: the TRANSMISSION mode working with traditional
RPCs such as XMLRPC [40], and the SHARE mode built on
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top of VMRPC, a dedicated RPC architecture for VMM
platforms. The main difference between the two modes is
the manner by which data from the client are delivered to
the server, or vice versa. In TRANSMISSION mode, all data
are transferred through the traditional TCP/IP protocol
stack, whereas in SHARE mode, they are fetched from a
shared zone in the address space of the application.

Two programming interfaces are provided by CUDA:
runtime and driver APIs. We chose runtime API as the
target of virtualization because it is the most widely used
library in practice, as well as the officially recommended
interface for programmers. However, we do not anticipate
any main obstacle in the virtualization of the driver-level
API. In addition to the runtime APIs described in the official
programming guide, there are six other internal APIs in the
dynamic linking library of CUDA runtime: __cudaRegister-
FatBinary(), __cudaUnregisterFatBinary(), __cudaRegisterVar(),
__cudaRegisterTexture(), __cudaRegisterSurface(), and __cu-
daRegisterFunction(). These six APIs are used to manage
the CUDA kernel (device code) and device memory
allocated to CUDA variables, texture, or surface. All the six
APIs are compiled by NVCC into a final binary, thereby
rendering it invisible to programmers. The virtualization
methods of APIs are introduced in Section 4.2.

vGPU is created, identified, and used by the vCUDA
library. In fact, vGPU is represented as a database in the
memory maintained by the vCUDA library. vGPU provides
three main functionalities. First, vGPU abstracts several
features of the real GPU to give each application a complete
view of the underlying hardware. Second, vGPU creates a
virtual GPU context for each CUDA application, which
contains the device attributes, such as GPU memory usage
and texture memory properties. vCUDA sets up a synchro-
nization mechanism between the vGPU and the stub to
ensure data consistency. The third function of vGPU is to
store the CUDA context for the need of suspend/resume as
described in Section 4.4.2.

vCUDA stub receives remote requests and creates a
corresponding execution context for API calls from the
guestOS, then accomplishes the required CUDA task and
returns the results to the guestOS. The stub manages the
actual physical resources (device memory, and so on),
dispatches the service threads and working threads, and
keeps a consistent view of the states on both sides of the
server and client through periodical synchronization with
the vGPU. The vCUDA stub maintains the consistency of
internal objects with the help of a Virtual Object List (VOL).
The details of this data structure are illustrated in Section 4.2.

As the server, vCUDA stub spawns threads to manage
the CUDA devices and answer CUDA requests. There are
two different kinds of threads in vCUDA stub: working
threads and service threads. One service thread corre-
sponds to a remote client waiting for CUDA service. This
thread receives the CUDA command via the RPC channel,
translates the command into a server-side representation,
and then forwards the command and related information to
the working threads. Each of working threads corresponds
to one physical GPU device. It obtains the CUDA function
arguments from the service threads and manipulates the
GPU device to complete the CUDA task. When the working

threads are finished, the service threads collect the result
and transfer it to the corresponding vCUDA library as the
return of the RPC. The separation of the service and
working threads is an important feature to realize the
multiplex of GPU device in virtual machines. The details of
multiplex are presented in Section 4.4.1.

4.2 Tracking CUDA State

CUDA state. For vCUDA, simply delivering the original
arguments and directly calling the CUDA API on the server
side are insufficient. As mentioned before, CUDA maintains
a large amount of internal states, such as memory pointer,
CUBIN handler, variable symbol, array pitch, texture, and
so on. Remotely managing these states is a very complicated
task because the original CUDA APIs were not designed
with this approach (remote execution), not to mention the
proprietary nature of the CUDA platform, in mind. In order
to properly implement a remote execution environment for
relevant APIs in VMs, keeping track of the CUDA state in
software is necessary. For example, when a CUDA program
begins, objects such as texture and variable are registered as
symbols, and subsequent APIs manipulate these objects
with these symbols. The vCUDA framework must know
how to correctly manipulate these objects. Another example
is the client memory pointer used by CUDA applications,
which resides in and is only accessible by the guestOS.
Directly delivering the raw pointers to the hostOS makes no
sense. Therefore, the vCUDA stub must track these objects
while the application is running.

Virtual object list. In order to track CUDA objects,
vCUDA keeps all the objects’ information in a global list,
called Virtual Object List. This list manages and synchro-
nizes the content of objects shared between the server and
client. When a client invokes a remote call to the server, the
VOL locates the client-side objects corresponding to the API
parameters and updates their contents. On return to the
client, the VOL looks up the CUDA object associated with
the parameters to propagate changes made by the server
to the client. To perform this task, the VOL must track
allocation and deallocation events to determine when to
add or delete an object from the tracking list.

For example, vCUDA takes advantage of VOL to keep
internal consistency of memory objects. There are two
different kinds of memory objects: the device memory
object in GPU and the host memory object in server/client
RAM. As for the device memory object, the entry of an
allocated device memory chunk is registered to the VOL
when calling cudaMalloc(), and removed from the list when
calling cudaFree(). Based on the VOL, vCUDA can determine
the size and base address of all device memory chunks used
by the CUDA runtime. The server/client memory object is
also registered to the VOL, and vCUDA uses the VOL to
control the data-transfer operation. If any CUDA API
parameters are passed by the reference (typically a memory
pointer), the vCUDA library delivers (in TRANSMISSION
mode) or copies (in SHARE mode) the referent to the
vCUDA stub.

Aside from the memory objects referenced by the device
pointers or server/client pointers, the VOL must also
manage other CUDA objects, such as the CUBIN handler
and variable symbol. For symbols, vCUDA traces their usage
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(by the name and address), and then translates them to
appropriate remote objects in the vCUDA stub. In the
following sections, we explain in detail how symbols of
variables are traced and translated. When __cudaRegister-
Var() is called in the client, it binds the second argument,
hostVar, a specific string, to its third argument, deviceAddress,
which is an address in GPU. vCUDA then duplicates the
original string in the stub and keeps its address in the VOL.
When cudaMemcpyToSymbol() or cudaMemcpyFromSymbol() is
called, the vCUDA stub searches the VOL according to the
name, and launches the API with the obtained address. The
virtualizations of __cudaRegisterTexture() and __cudaRegister-
Surface() are similar to __cudaRegisterVar(). Aside from the
symbols, the CUBIN handler in __cudaRegisterFatBinary()
and function stub in __cudaRegisterFunction() are also trans-
lated between the server and client.

Identify internal objects. In order to keep track of the
CUDA runtime states, vCUDA needs to identify all the
arguments that represent the internal objects. For most of
the CUDA APIs, this task is easy because the arguments are
set up in a fixed location. But cudaSetupArgument() is very
different from other APIs, it is used to push the arguments
of a CUDA kernel (device function) to a device execution
stack. The programmer is free to determine the number,
type, and sequence of arguments for this API. Therefore,
vCUDA has no prior knowledge for identifying items
relevant to the internal objects. Fortunately, server/client
memory objects are never constructed using these kinds of
arguments in practice, which significantly reduces the
complexity of virtualization. In our implementation, the
vCUDA distinguishes normal arguments with state-related
ones by comparing them with the value stored in the VOL.

API virtualization without remote call. Not all APIs
need to be intercepted and redirected to a remote site. Those
that do not modify the CUDA runtime states can be replaced
by local ones. A typical example is cudaGetDeviceProperties(),
which queries the GPU for device properties and compute
capacity. vGPU relies on this API to return some customized
information to create a fake GPU for applications. This also
provides an opportunity for vCUDA to control the part of
the features of physical GPUs exposed to the client.

In CUDA 3.2, the API cudaHostAlloc() is the same to
cudaMallocHost() by default. However, this API supports
additional features, such as “zero-copy.” When the flag
option cudaHostAllocMapped is set, cudaHostAlloc() maps the
allocation into the CUDA address space. Then, the CUDA
kernels are able to directly access CPU memory without any
cudaMemcpy(). Using zero-copy, CUDA eliminates the need
to copy data to/from the device memory. For the vCUDA,
zero-copy confuses the local CPU address space and remote
GPU address space, leaving the vCUDA with no means to
distinguish them in a CUDA kernel launch. So far, zero-copy
is not supported by vCUDA.

4.3 Optimizations

4.3.1 VMRPC: RPC Based on Shared Memory

In order for vCUDA to work correctly, the environment in
which the CUDA routine is called from the stub in the
hostOS must be identical to the environment in which it is
called from the vCUDA library in the guestOS. In an earlier
version of vCUDA [32], we developed a TRANSMISSION
mode wherein all parts of this environment are transmitted

from the vCUDA library to the stub, and vCUDA constructs
a fake execution context for every CUDA call. The transfer
task is fulfilled by a traditional RPC system, XMLRPC.
Great effort was made to adapt the XMLRPC framework to
the VMM environment; however, significant overhead was
still introduced to vCUDA. The performance overhead
comes from some aspects including the low bandwidth data
channel between VMs, the expensive serialization/deser-
ialization procedure, redundant data copies, and frequent
VMM interventions.

Finally, we decided to develop a dedicated RPC frame-
work for VMM, called Virtual Machine Remote Procedure
Call [6]. VMRPC was designed based on the shared
memory mechanism in mainstream VMMs such as KVM,
Xen, and VMware. Fig. 2 shows the VMRPC architecture.
VMRPC is made up of three components: transfer channel,
control channel, and notification channel. Transfer channel
is a preallocated large shared-data section dedicated to
large-capacity and high-speed data transfer. The transfer
channel directly opens a fast channel in the address space of
two processes that reside in different VMs. The control
channel is realized as tiny shared zones of server and client,
which is responsible for constructing the RPC semantics as
substituent of the interface definition language (IDL) in
traditional RPC systems. The notification channel is an
asynchronous notification mechanism, similar to hardware
interrupt or software signal. The notification channel is
implemented by leveraging the special inter-VM commu-
nication mechanism in certain VMM platforms. Its main
task is to trigger the RPC actions, and to manage the
synchronization of shared memory accesses. In VMRPC, the
notification channel is the only part where the OS and VMM
level activities must be involved.

Memory mapping. Unlike the other studies on inter-VM
communication optimizations discussed in Section 2.2,
VMRPC directly sets up the shared zone at the virtual
address space of the process. Fig. 3 shows how VMRPC uses
user space memory mapping to deploy control channel and
transfer channel. In KVM, the IVSHMEM [27] tool supports
an inter-VM shared memory device that maps a shared
memory object as a PCI device in the guestOS. In Xen, the
hostOS can map a foreign memory space from guestOS to its
own address space, and then directly access the mapped
memory. In the VMware workstation, virtual machine
communication interface (VMCI) infrastructure provides
memory-sharing capability between VMs on the same host.

Transfer channel. By using the memory mapping me-
chanism, VMRPC built a preallocated large memory region:
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shared heap, which is mapped into both server and client. The
shared heap is different from the standard operating-system-
provided main heap; however, the two can be interchange-
ably used by applications. For the shared heap, the VMRPC
realizes an elegant heap management interface. When a piece
of data needs to be shared, the programmer (the vCUDA
designer in our case) should use VMRPC_malloc() instead of
regular C function malloc() to allocate the virtual memory.
This places the allocation in the shared heap instead of the
regular private heap of system process, allowing the server to
directly access the heap. When this space is no longer needed,
the API VMRPC_free() should be invoked, which operates in
the same way as the standard equivalent free(), but in the
shared heap of VMRPC. VMRPC also provides APIs to help the
programmer decide the size of shared heap, and when to set it
up or tear it down. In VMRPC, OS layer data copying is
omitted by removing the OS and VMM from the critical data-
transfer path.

Control channel. A native procedure call does not need an
interface definition language because both the caller and
callee are statically compiled to pinpoint the arguments and
their exact location. Since in VMM the caller and callee also
reside in the same host (although located in different VMs),
there is no need to perform complicated data manipulations,
such as data serialization and deserialization.

As Fig. 3 depicts, the control channel consists of the
control page and the RPC stack. The control page serves as the
control information exchange tunnel for the RPC caller and
callee. When VMRPC initializes, it stores the information
about the size, start address of RPC stack and shared heap,
and so on. When the client launches an RPC, it stores the
RPC index and stack frame information. After the server
finishes the call, the acknowledgment and return value also
stay in the control page. The RPC stack is shared between the
server and client, and stores all the arguments of CUDA
API calls. When the client issues a remote call, the private
execution stack of the client is forwarded (shared) to the
server as an RPC stack. In VMRPC, the server directly uses
the contents in this stack. All the function arguments and
any in-stack structures that are pointed to are made
available. This procedure does not involve large-capacity
data replication, analysis, or coding. No matter how
complicated the arguments and return value of the calls
are, the overall overhead in VMRPC is only proportional to
the cost incurred by the notification channel described
below. Therefore, VMRPC simultaneously achieves a low
latency and low CPU load.

Notification channel. In VMRPC, the VMM-specific
asynchronous mechanism is used as a notification channel,
such as the VMCHANNEL [35] in KVM, the event channel
in Xen, and the VMCI datagram in VMware workstation.
The use of VMM-specific notification mechanism is helpful
in reducing the latency in the RPC system, which is critical
for highly interactive applications. Our evaluation shows
that latency of VMRPC in KVM and Xen is only 10 percent
of that of the native socket.

In summary, VMRPC completely bypasses the OS and
VMM, eliminates the data serialization/deserialization op-
erations, and takes full advantages of VMM-specific mechan-
isms to improve the overall system performance.

4.3.2 Lazy RPC

Thousands of CUDA APIs could be called in a CUDA
application. If vCUDA sends every API call to remote site at
the moment the API is intercepted, the same number of
RPCs will be invoked and the overhead of excessive world
switch (execution context switch between different VMs)
will be inevitably introduced into the system. In virtual
machines, the world switch is an extremely expensive
operation and should be avoided whenever possible [28].
We adopted an optimization mechanism called Lazy RPC to
improve the system performance by intelligently batching
specific API calls.

We classify the CUDA APIs into two categories: instant
APIs, whose executions have immediate effects on the state
of CUDA runtime system, and lazy APIs, which are side-
effect-free on the runtime state. This kind of classification
allows vCUDA to reduce the frequency of world switch by
lazily updating states in the stub. vCUDA can defer
decisions about the specific state to transmit until the
application calls an instant API because vCUDA records
parts of the CUDA states, rather than immediately launch-
ing remote call for all APIs. vCUDA decreases unnecessary
RPCs by redirecting lazy APIs to the stub side in batches,
thereby boosting the performance of the system. A potential
problem with lazy mode is the delay of error reporting and
time counting. Therefore, the lazy mode may not be suitable
for debugging and measurement purposes.

An example of instant API is cudaMalloc(), which returns
a device address and changes the CUDA state in the client.
Each cudaMalloc() must be immediately launched as a
remote call. cudaMemcpy(DeviceToHost) directly changes the
client state, and is also an instant API. Two typical lazy
APIs, cudaConfigureCall() and cudaSetupArgument(), prepare
for subsequent cudaLaunch(), which can also be delayed
until an API returns the device state (cudaMemcpy(Device-
ToHost) in most cases).

Classifying an API as instant or lazy is sometimes
difficult. For example, in some CUDA applications, several
consecutive cudaMemcpy(HostToDevice) could be grouped
into one remote call, until a cudaMemcpy(DeviceToHost)
changes the client state. But vCUDA cannot determine
whether the application will reuse the host memory between
the calls of cudaMemcpy(HostToDevice). Considering the
overhead in memory copy operation, vCUDA chooses to
remotely invoke every cudaMemcpy(HostToDevice) (i.e., as an
instant API).
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4.4 Extra Functionalities

In a precious study [8], the authors used four primary
criteria in comparing the virtualization method of GPU:
performance, fidelity, multiplexing, and interposition. The
former two indicate how close the virtualization method is
in providing a complete GPU illusion to the operating
system and user. The latter two emphasize the special
functionalities of virtualization, such as resource multi-
plexing, live migration, secure isolation, and so on. The
performance and fidelity are discussed in Section 6. In this
section, we describe two advanced functionalities of
virtualization supported by vCUDA.

4.4.1 Multiplexing

One fundamental feature provided by VMs is device multi-
plexing. The VMM/hostOS manipulate the native hardware
while preserving the illusion that each guestOS occupies a
complete stand-alone device. For example, in Xen, the
physical network card can be multiplexed among multiple
concurrently executing guestOS. To enable this kind of
multiplexing, the privileged driver domain (domain0) and
the unprivileged guest domain (domainU) communicate by
means of the frontend-backend driver architecture. The
driver domain hosts the back end, and the guest domain hosts
the front end. Nevertheless, the GPU does not support this
kind of multiplexing. Unlike network controllers, GPU
specification is privately held by hardware vendors, and
often dramatically changes across revisions. Thus, multi-
plexing a physical GPU device in the way commonly used by
popular virtual machines to virtualize hardware devices is
nearly intractable.

CUDA supports three different compute modes: default
(two and more host threads can share one GPU), exclusive
compute (only one host thread can use the device at any
given time), and prohibited compute (no host thread can use
the device). Naturally, default mode is the best choice to
multiplex the GPU in a virtualized environment because it is
already able to share the GPU. Fig. 4 shows a one-to-one
model executing the remote CUDA task. A dedicated service
thread is allocated for each CUDA client (regardless of
whether they come from the same VM or different VMs). The
CUDA runtime has the responsibility to manage the service
thread and serially execute different CUDA kernels of
threads in a FIFO order. The access to GPU is blocked when
another service thread has already occupied the device.

Nevertheless, this model has a shortcoming in that it relies
too heavily on the CUDA framework to directly multiplex
the GPU devices. First, CUDA is a private and fast-changing
framework for GPGPU computing. The multiplex feature of
CUDA and its interface may change in the future. If the
device multiplex function can be separated from the CUDA
runtime, it will provide the maximum flexibility in the
changing face of technological constraints and opportunities.
Second, not all GPU hardware and software frameworks
support the default mode of sharing GPUs between multiple
threads, especially for GPUs and APIs dedicated to graphics.
Third, some applications need the GPU in the host to run in
the exclusive mode. For example, a node equipped with
three graphic cards may set each of its GPUs to exclusive
mode in order to accelerate one of its multi-GPU CUDA
applications.

In short, vCUDA should expose the device multiplex
function using itself as basis, independent of specific API
framework such as CUDA, OpenCL, or DirectCompute.
Thus, vCUDA develops a one-to-many model to multiplex
GPU device in the VM. Fig. 4 shows the one-to-many
model. In this model, only one working thread is allocated
for each GPU device in hostOS, and all CUDA requests are
completed in its context. As described in Section 4.1, the
vCUDA stub spawns one service thread for each vCUDA
client, which obtains the remote CUDA request from the
vCUDA client then forwards the request to the working
thread. Under the coordination of the vCUDA stub, two
different service threads can cooperatively manipulate one
hardware resource by connecting to a single working
thread. The working thread is a standard CUDA application
that serializes all the requests of the vCUDA clients and
executes the CUDA kernels one by one.

Regardless of whether multiple vCUDA clients reside in
the same VM or come from different VMs, vCUDA allows
them to be concurrently executed. Our tests show that there
was no marked difference between the two scenarios. In all
cases, the concurrent vCUDA clients compete for resources
in two levels: hardware and software. Hardware resource,
such as global memory, is occupied by client_A when
cudaMalloc() is called, and is released by calling cudaFree().
Before cudaFree(), this memory region cannot be reassigned
to any other vCUDA clients, even if, for the time being,
client_A does not launch any CUDA kernels. Hardware
resources on the chip, such as registers and shared memory,
are shared for all running CUDA kernels. Software resources
include the virtual address space and handler. Because the
Fermi GPU already supports the 40-bit unified address
space, these would not be a significant problem, even for
hundreds of concurrent threads.

4.4.2 Suspend and Resume

Most VMMs support suspend/resume functionality, which
enables the user to pause a guestOS and resume it at a later
time, as if it was never stopped. The key idea of S&R is to
save and restore the inner state of the entire operating
system. The typical states include CPU registers, memory
content, storage content, network connections, and so on.
However, these are not sufficient to suspend and resume a
guestOS that runs CUDA applications, because portions of
their states reside in GPU (DRAM, on-chip memory, and
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registers), not in the CPU or system memory. These states
are complex because the GPU has multiple memory levels
and thousands of registers. Furthermore, no general
method exists to directly read/write most of these states.
In our early implementation [32], a full API flow record and
replay strategy was used to restore the whole GPU state,
which consumes a significant amount of resources.

However, the GPU state is complex only when one
CUDA kernel is running. CUDA kernels represent the core
computing part of the CUDA application and are executed
by thousands of parallel threads inside the GPU. When a
CUDA kernel is finished, all its output is stored in the
DRAM of the GPU device, and there is no need to rebuild
the inner state of each kernel. This observation led us to
develop an out-of-the-kernel S&R scheme:

In the suspend stage, when a suspend signal is received,
vCUDA checks whether a CUDA kernel is running. If so, the
vCUDA waits until the kernel is finished. When there is no
active kernel, vCUDA library notifies the vCUDA stub to
start the suspend process. The device memory object is
transferred from the GPU DRAM to the host DRAM using
cudaMemcpy(DeviceToHost). All objects in VOL are trans-
ferred to and duplicated in vGPU. The CUDA application
will then be frozen along with the guestOS. In the resume
stage, vCUDA initiates a new working thread on the host,
and synchronizes the working thread with the CUDA state
stored by vGPU. The synchronization is accomplished by
reallocating the GPU DRAM, transferring the data from the
guestOS to hostOS, and finally, rebuilding the device object
through cudaMemcpy(HostToDevice).

A potential difficulty exists with vCUDA resume.
Although vCUDA can rebuild the virtual object in the
device memory, it cannot decide the address of the object in
virtual space. In normal CUDA applications, the device
memory address is obtained by calling cudaMalloc(), which
means that the address is managed by CUDA runtime in an
opaque way. When vCUDA reallocates the GPU DRAM to
rebuild the virtual object in the resume stage, cudaMalloc()
may return an address different from the preceding address
in the suspend stage. This leads to an inconsistent state of
CUDA applications between the suspend/resume points.
Our solution to this problem is to maintain a GPU memory
pool, which is a two-phase memory management scheme
on top of the CUDA runtime. At the suspend stage, the
vCUDA stub preallocates a bulk of GPU memory using
cudaMalloc(). Subsequent client memory allocation requests
(through cudaMalloc()) are replaced by vcudaMalloc(), which
allocates the GPU memory from the previously established
memory pool. As a result, vCUDA can track and control the
device memory allocation operations in this manner. At the
resume stage, the vCUDA stub rebuilds the GPU memory
pool. The device memory objects of the suspended CUDA
application were restored by launching vcudaMalloc() with
the special address argument.

With the GPU memory pool, vCUDA provides support
for suspend and resume, enables client sessions to be
interrupted or moved between nodes. Upon resume,
vCUDA presents the same device state that the application
observed before being suspended, while retaining hardware
acceleration capabilities.

5 ILLUSTRATING EXAMPLE

This section presents an illustrating example of vCUDA.
In Fig. 5, we illustrate the internals of vCUDA by walking
the reader through a simple example from CUDA 3.2
SDK. Matrix multiplication is an application in the official
SDK, which implements matrix multiplication, namely,
C ¼ A� B. The matrix dimensions are 80� 160, 80� 80,
and 80� 160 in A, B, and C, respectively, as the default
configuration. According to the workflow of CUDA
compilation, the source file (matrixMul.cu) coded in the
extended CUDA language is compiled by NVCC to a
normal ANSI C file (matrixMul.cu.c). Its main part is
presented in Fig. 5 (where the randomInit() is an auxiliary
function defined to initialize the memory with random
values):

Virtualizing CUDA objects. Fifteen CUDA APIs are
involved in this example (for simplicity, the cudaGetError-
String() and cudaGetLastError() are not counted), each with
different kinds of arguments. Some of the arguments can
be directly wrapped, including immediate values (51200,
0, sizeof(par*)), and predefined constants (cudaMemcpyDe-
viceToHost, cudaMemcpyHostToDevice).

Fig. 5 shows how the CUDA kernel is organized. First,
the entire device code in matrixMul.cu (INCLUDE
matrixMul_kernel.cu) is compiled to plain text __dText_*
by NVCC. In our case, two different kinds of device text
are present: the PTX file that contains the ASCII instruc-
tion sets and the CUBIN file organized as an ELF image.
The options “-gencode=arch=compute_10” and “-genco-
de=arch=compute_20” are the default settings for NVCC.
Therefore, two device texts are generated for each format.
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All the device texts are combined to __fatDeviceText, and
are registered to a handler __cudaFatCubinHandle. A device
stub matrixMul is then bound to this handle through
__cudaRegisterFunction(). Finally, the stub is launched by
cudaLaunch() as the reference to the actual CUDA kernel.
These operations (register, bind, and launch) correspond to
three explicit CUDA APIs that can be exploited by vCUDA
to realize virtualization. vCUDA stores their relationship as
two tuples (text to handle and handle to stub) in the VOL,
and dereferences them in the vCUDA stub when cuda-
Launch() is invoked. In this example, __cudaRegisterTex-
ture(), __cudaRegisterSurface(), and __cudaRegisterVar() are
not present.

The device memory pointers d_A, d_B, and d_C are
virtualized with the help of the VOL, as described in
Section 4.2. When cudaMalloc() is invoked, the size and base
address of the device memory object are stored in the VOL,
and is removed from the list when calling cudaFree(). If any
device memory pointers are used as the arguments of
subsequent CUDA API (typically cudaMemcpy()), the
pointers are dereferenced in the vCUDA stub according
to the information saved in the VOL.

The server/client memory referenced by pointers must
be reproduced in another address space either by memory
transfer or sharing. All these pointers can be divided into
five main categories: C fashion strings (__dText_c20,
__dText_c10), array (__dText_sm20_c20, __dText_sm10_c10),
structure pointers &__fatDeviceText, & deviceProp, grid,
threads, heap pointers h_A, h_B, h_C, and stack pointers &
par0, & par1, & par2, & par3, & par4. We can obtain the
length of memory objects that these pointers indicate at
either compiling time or runtime. First, the size of the
structures is obtained from C header files at the compiling
time. Second, the length of string is easily determined at
runtime because the string always ends with a NULL.
Third, the structure __cudaFatElfEntry shows the size of
__dText_sm{*}_c{*}. Fourth, cudaMemcpy() reveals the size of
heap content through its third argument. Finally, cudaSetu-
pArgument() introduces its first argument, a stack pointer,
by its second argument.

Identify CUDA objects. In this example, the program-
mer defines five arguments for cudaSetupArgument(), of
which two are immediate values and three are device
memory pointers. As previously mentioned, vCUDA
registers these pointers in the VOL beforehand when they
are assigned by cudaMalloc(). When cudaSetupArgument() is
called, each argument is searched in the VOL. When one of
list entry matches the value, the appropriate argument is
treated as an internal object pointer and is expanded.

API virtualization without remote call. Device query
APIs (cudaGetDeviceCount(), cudaGetDeviceProperties(), cuda-
SetDevice()), and cudaGetDevice()) are replaced by local ones,
which directly respond to the application request from the
vGPU component without issuing a remote call. When
initializing vCUDA, the properties of virtual GPUs are
customized according to the physical GPU configuration.

VMRPC optimization. In this example, the data of matrix
need to be transferred from the client to the server, which
rely on the matrix dimensions. When the matrix becomes
bigger, more time will be spent on the data transfer. For
data-intensive applications, the loading time for large
memory object can be quite long and may seriously hinder
the performance of RPC. This is the main reason vCUDA

exhibits poor performance in TRANSMISSION mode. To
highlight the essential features of VMRPC, we provide a
detailed description about the virtualization of cudaMemc-
py() in SHARE mode. There are three cudaMemcpy() in this
example, two for the input matrices A and B, and one for
output matrix C. For all cudaMemcpy(), VMRPC allocates
memory space for these calls in transfer channel (shared heap)
according to the third argument of these calls. VMRPC then
copies the data of matrix to or from the transfer channel.
Because the transfer channel is already shared between the
server and the client, the expensive data-transfer overhead is
replaced by the time consumption of VMRPC initialization
and local memory copies, which is far less than the cost in
TRANSMISSION mode in most cases.

Lazy RPC. The __cudaRegisterFatBinary() is an instant API
because its return value, CUBIN handler, is later referenced
by subsequent APIs. The subsequent APIs can be delayed
until a cudaMalloc() is called because its return value (device
memory address) changes the CUDA runtime state in the
client. In this example, the two cudaMemcpy(HostToDevice)
could be integrated into one remote call in logic because the
host memory spaces they occupy (the content of the
matrices A and B) are separated from each other. However,
as previously mentioned, vCUDA treats them as two instant
APIs. cudaConfigureCall(), cudaSetupArgument(), and cuda-
Launch() are batched and launched until the next instant API
cudaMemcpy(DeviceToHost) is called. The three cudaFree()are
lazy APIs. The last __cudaUnregisterFatBinary() announces
the end of the CUDA kernel execution in our example,
whereas, in other CUDA applications, this API can be
launched multiple times corresponding to multiple kernels,
and can be delayed until the last one is called.

6 EVALUATION

Whereas the previous sections present detailed technical
descriptions of the vCUDA system, this section evaluates
the efficiency of vCUDA using benchmarks selected from
the official SDK of NVIDIA. The benchmarks range from
simple data management to more complex Walsh Trans-
form computation and MonteCarlo simulation. All bench-
marks are from the standard CUDA SDK distribution (3.2)
without any modification, except for the BlackScholes test.
The iteration number of BlackScholes was set to 1 instead of
512 to meet the device capacity restriction of our testbed.

Table 1 shows the statistical characteristics of these
benchmarks, such as the quantity of API calls, the amount
of device memory they consume, and the data volume
transferred from/to a GPU device.
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These applications are evaluated according to the

following criteria:

. Performance. How close is the vCUDA in providing
the performance similar with that observed in an
unvirtualized environment with GPU acceleration?

. Lazy RPC. How greatly can vCUDA boost overall
performance by Lazy RPC mechanism?

. Concurrency. How well does vCUDA scale in
supporting multiple CUDA applications concur-
rently running?

. Suspend and resume. How much of the CUDA state
needs to be saved for a vCUDA suspend operation?
What is the latency for resuming a suspended
CUDA application?

. Compatibility. How compatible is vCUDA with a
wide range of third-party applications aside from
the examples distributed with CUDA SDK?

The following testbed was used for our evaluation: a
machine was equipped with an Intel Xeon E5504 2 GHz
processor and 4 GB memory. The graphics hardware was
GTX470 of NVIDIA. The test machine ran Fedora 13 Linux
distribution with the kernel version 2.6.33.3 as both hostOS
and guestOS, and the official NVIDIA driver for Linux
version 260.19.26. We used the CUDA toolkits and SDK 3.2,
and chose KVM 0.14.0 as our VMM. All virtual machines
were set up with 1 GB RAM, 10 G disk, and bridge mode
network configuration. All the evaluation results are
averaged across 20 runs.

6.1 Performance

We conducted the performance evaluation by comparing
the execution time in virtual machine with that of native
runs. All test programs were evaluated in three different
configurations:

. Native. Every application has direct and exclusive
access to the hardware and native CUDA drivers.

vCUDA was not used in this case, which represents
an upper bound of achievable performance for our
experimental setup.

. vCUDA with VMRPC. Applications running in the
guestOS leveraged the vCUDA to access real hard-
ware device. All CUDA API calls were intercepted
and redirected to the hostOS through VMRPC.

. vCUDA with XMLRPC. This is similar with the
previous case, except that VMRPC is replaced with
XMLRPC.

Fig. 6a depicts the results from running the benchmarks
under the three configurations described above. The results
show that the performance of vCUDA (VMRPC) is very close
with native runs, whereas vCUDA (XMLRPC) incurs a
significant overhead, especially for cases involving large
data transfer, such as programs AT and SA. We can also
observe that when the amount of data transferred is less, the
closer the performance of vCUDA (XMLRPC) is to the native
and vCUDA (VMRPC) runs, such as in the cases of BO and
MC. This indicates that normal RPC system, such as XMRPC,
is not efficient enough for high-capacity data transfer.

Fig. 6a also shows that all eight programs with vCUDA
(VMRPC) caused performance degradation from 1 to
21 percent (an average of 11 percent), as compared with
the overhead with vCUDA (XMLRPC) ranging from 43 to
1,600 percent, except for MC. The MC benchmark shows
nearly the same performance in all the three cases because it
spent much more time on the CPU than on the GPU. Based
on this observation, the key bottleneck of vCUDA lies in the
data representation and transfer, which is the main
motivation for us to design and implement the VMRPC.

The overhead of vCUDA (VMRPC) can be attributed to
several aspects: vCUDA library overhead (managing the
local vGPU and maintaining the lazy API queue), vCUDA
stub overhead (dispatching the remote task between
the service thread and working thread, access validation,
and managing the VOL), RPC overhead (initialization of
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shared memory and memory copies), VMM overhead (world
switching and VMM scheduling), and the absence of some
CUDA features in vCUDA, such as the page-locked memory
optimization. We leave further quantitative analysis regard-
ing the overhead of vCUDA for future work.

6.2 Lazy RPC and Concurrency

Fig. 6b compares the frequencies of RPC call in two cases
with lazy mode enabled and disabled, respectively. As it
shows, the lazy RPC transmission mode significantly
reduces the frequency of remote calls between two domains.
Fig. 6c presents the performance of vCUDA (VMRPC) with
and without lazy RPC. It proved that the lazy RPC mode
improves the overall performance of vCUDA, especially for
applications containing a large number of API calls, such as
AT and SA.

To examine the ability of vCUDA in supporting con-
current execution of multiple applications, we compared the
performance of two applications running concurrently in the
native default mode of NVIDIA GPU with the performance of
the same two applications running concurrently in vCUDA
(VMRPC). In this experiment, each test program runs
concurrently with the same reference application. The bench-
mark program BO was chosen as the reference application
because it consumes less device resource and has successful
in running concurrently with all other programs.

Fig. 6d presents the results of these experiments. The
benchmarks with the unvirtualized configuration in all
cases present good scalability, and the overheads for all
applications are all below 4 percent (3.6 percent for AT,
3.5 percent for BO, 1.3 percent for BS, 0.1 percent for CS,
2.5 percent for FWT, 0.9 percent for MT, 0.7 percent for
MC, and 0.2 percent for SA). In contrast, the counterparts
in vCUDA (VMRPC) show obvious performance degrada-
tion. The overhead ranges from 0.5 to 11.5 percent. This
phenomenon reflects the substantial difference between the
default sharing mode of CUDA and the one-to-many mode
of vCUDA. Although they both need to manage multiple
CUDA threads and reschedule CUDA kernels, the CUDA
runtime undoubtedly has more knowledge regarding the
internals of CUDA framework, thereby showing better
performance than vCUDA.

6.3 Suspend and Resume

When testing the S&R functionality of vCUDA, we first
suspended the test program at arbitrary points in time, and
then resumed the program to check if the resume operation
was successful. We measured the size of CUDA state that
must be saved to synchronize the vCUDA stub with the
current state of the application and the duration needed to

perform the entire resume operation. The results of these
experiments are shown in Figs. 6e and 6f, respectively.

Note that all objects in the VOL have their own life
cycles. When the suspend action occurs if the object is alive,
it belongs to the state that needs to be saved. In most cases,
the biggest data volume of the CUDA object is the device
memory object, which is reflected in Fig. 6e.

The resume time in Fig. 6f is strongly dependent on the size
of the suspended CUDA states, which can be as large as
109 MB for CS. The test program CS takes more time to
perform the resume operation than others due to its larger
data volume of CUDA states. In contrast, there is a nontrivial
resume overhead for BO (0.19 s) and MC (0.19 s), even if their
databases of CUDA states are very small. This can be
explained by the constant overhead for vCUDA resume
operation, such as the creation of GPU memory pool.

6.4 Compatibility

In order to verify the compatibility of vCUDA, we chose five
applications from the CUDA zone [7]: mp3 lame encoder [30],
molecular dynamics simulation with GPU [26], matrix-vector
multiplication algorithm [11], storeGPU [1], and MRRR
implementation in CUDA [24]. These applications were
selected because none of them use 3D graphic API or drive
API, which is not supported by vCUDA. Although CUDA
supports the interoperability between CUDA and traditional
graphics API, virtualization graphic interfaces such as
OpenGL and Direct3D are beyond the scope of this paper.

All five third-party applications passed the test and
returned the same results as in native executions. The details
of these tests are presented in Table 2, which shows that
when running in vCUDA, these applications exhibit similar
performance characteristics as those discussed in Section 6.1.
For example, the performance degradation of application
MV in vCUDA (XMLRPC) is mainly due to the higher data
volume transfer compared with other applications.

7 RELATED WORK

According to the specific features and practical require-
ments, many existing systems intercept calls to the graphics
library for various purposes. VirtualGL [34] virtualizes GLX
to grant remote-rendering ability. WireGL [18] and its
successor Chromium [17] intercept OpenGL to generate
different outputs, such as distributed displays. Chromium
provides a mechanism for implementing plug-in modules
that alter the flow of GL commands, allowing the distribu-
tion of parallel rendering. HijackGL [29] uses the Chromium
library in exploring new rendering styles. In VMM platform,
this methodology is used to achieve 3D hardware accelera-
tion in a VM. VMGL [23] deploys a fake stub in guestOS and
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redirects the OpenGL flow to hostOS. The Blink Project [15]
intercepts OpenGL to multiplex 3D display in several
client OS. Another main category is the tool in helping
performance analysis and debugging. The ZAPdb OpenGL
debugger of IBM [19] uses interception technique to aid in
debugging OpenGL programs. The Graphics Performance
Toolkit of Intel [20] uses a similar method to instrument
graphics application performance.

As the GPGPU library, rCUDA [9], GViM [14], and
gVirtuS [12] are three recent research projects on CUDA
virtualization in GPU clusters and virtual machines. They all
use an approach similar to vCUDA. The rCUDA framework
creates virtual CUDA-compatible devices on those machines
without a local GPU to enable a remote GPU-based
acceleration, and communicate using the sockets API
between the front end and back end. rCUDA can be used
in the virtualization environment, but it requires the
programmer to rewrite the CUDA applications to avoid
the use of the CUDA C extensions, and requires to change
the standard compile options to separate the host and device
code into different files. GViM is a Xen-based system, allows
virtual machines to access a GPU through XenStore between
a front end executed on the VM and a back end on the Xen
Domain0. GViM requires modification to the guest VMs
running on the virtualized platform, a custom kernel
module must be inserted to the guestOS. gVirtuS is a
transparent and VMM independent framework to allow an
instanced virtual machine to access GPUs. It implements
various communicator components (TCP/IP, VMCI for
VMware, VMSocket for KVM) to connect the front end in
guestOS and back end in hostOS. The design of commu-
nicator seems similar to the transfer channel in VMRPC, but
we believe RPC-based optimization that exploits the in-
herent semantics of the application, such as data presenta-
tion, would perform better than those merely optimizing
data-transfer channels, as proven in our previous work [6].
None of the three projects support suspend/resume
functionality of CUDA applications.

High-level middleware- and language-based VMs have

been studied and used for high-performance computing,

such as HPVM [5] and Java. In [16], the authors proposed a

framework for HPC applications in VMs, addressing the

performance and management overhead associated with

VM-based computing. They explained how to achieve high

communication performance for VMs by exploiting the

VMM-bypass feature of modern high-speed interconnects

such as InfiniBand, and reduce the overhead in distributing

and managing VMs in large-scale clusters with scalable VM

image management schemes.

8 CONCLUSIONS

In this paper, we have proposed vCUDA, a GPGPU high-
performance computing solution for virtual machines,
which allows applications executing within virtual ma-
chines to leverage hardware acceleration. This can be
beneficial to the performance of a class of high-performance
computing applications. We have explained how to
transparently access graphics hardware in VMs by API call
interception and redirection. Our evaluation showed that

GPU acceleration for HPC applications in VMs is feasible

and competitive with those running in a native, nonvirtua-

lized environment.
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